Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Emeritus Professor
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Emeritus Professor
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Epidemics

Hospital population density and risk of respiratory infection: Is close contact density dependent?

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Epidemics - 01 Dec 2024

Shirreff G, Thiébaut ACM, Huynh BT, , Chelius G, Fraboulet A, Guillemot D, Opatowski L, Temime L

Link to Pubmed [PMID] – 39647461

Link to DOI – 10.1016/j.epidem.2024.100807

Epidemics 2024 Dec; 49(): 100807

Respiratory infections acquired in hospital depend on close contact, which may be affected by hospital population density. Models of infectious disease transmission typically assume that contact rates are independent of density (frequency dependence) or proportional to it (linear density dependence), without justification. We evaluate these assumptions by measuring contact rates in hospitals under different population densities. We analysed data from a study in 15 wards in which staff, patients and visitors carried wearable sensors which detected close contacts. We proposed a general model, non-linear density dependence, and fit this to data on several types of interactions. Finally, we projected the fitted models to predict the effect of increasing population density on epidemic risk. We identified considerable heterogeneity in density dependence between wards, even those with the same medical specialty. Interactions between all persons present usually depended little on the population density. However, increasing patient density was associated with higher rates of patient contact for staff and for other patients. Simulations suggested that a 10 % increase in patient population density would carry a markedly increased risk in many wards. This study highlights the variance in density dependent dynamics and the complexity of predicting contact rates.