Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Developmental cell

Signaling-dependent refinement of cell fate choice during tissue remodeling in Drosophila pupal wings.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Developmental cell - 18 Sep 2025

Herszterg S, Cicolini S, de Gennes M, Huang A, Matamoro-Vidal A, Alexandre C, Smith M, Araujo H, Levayer R, Vincent JP, Salbreux G

Link to Pubmed [PMID] – 40972566

Link to DOI – 10.1016/j.devcel.2025.08.016

Dev Cell 2025 Sep; ():

How cell fate decisions and tissue remodeling are coordinated to establish precise and robust patterns is a fundamental question in developmental biology. Here, we investigate this interplay during the refinement of Drosophila wing veins. We show by live imaging that vein refinement is driven initially by local tissue deformation, followed by cell fate adjustments orchestrated by a signaling network involving Notch, EGFR, and Dpp. Dynamic tracking of signaling reporter activity uncovers a wave of Notch signaling that converts wide crude proveins into thin stereotypical veins. Perturbing large-scale convergence and extension does not affect vein refinement, and optogenetically induced veins refine irrespective of their orientation, demonstrating that the signaling network suffices for refinement, independently of large-scale tissue flows. A minimal biophysical description recapitulates the signaling network’s ability to coordinate vein refinement in various experimental situations. Our results illustrate how cell fate decisions are updated for robust patterning in a remodeling tissue.