Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Acta crystallographica. Section D, Biological crystallography

Scaffolds for protein crystallisation.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Acta crystallographica. Section D, Biological crystallography - 01 Oct 2002

Stura EA, Taussig MJ, Sutton BJ, Duquerroy S, Bressanelli S, Minson AC, Rey FA

Link to Pubmed [PMID] – 12351893

Acta Crystallogr D Biol Crystallogr 2002 Oct; 58(Pt 10 Pt 1): 1715-21

In the absence of a method to ensure that crystals can be obtained for any given protein, the possibility of developing scaffolds for protein crystallisation becomes attractive. Among several approaches that could yield scaffolds, two are particularly promising: the first is based on immunoglobulin Fab fragments and immunoglobulin binding proteins while the second is based on fusion proteins. In the Fab based scaffold, the protein of interest is the antigen recognised by the antibody. In the second case, it is a protein fused to one of the scaffold components. The operational difference between the two methods is the existence of a flexible covalent tether compared to a highly specific interaction. The relative merits and disadvantages of each approach are discussed here. We also describe a lattice obtained through a combinatorial approach which appears to have the required properties to be considered a scaffold. The system makes use of an Fab derived from a rheumatoid factor and an Fc-fusion protein. The Fc-fusion system is ideal for enhanced expression of glycoproteins in mammalian cells and provides a useful tag for their purification. The molecular replacement shows a mode of binding for this rheumatoid factor that is not competitive with bacterial Fc-binding proteins. Hence it may be possible to generalize the method to include bacterial expression of fusion proteins with either protein A or protein G as the fusion partner.