Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : PLoS pathogens

Antagonism of BST2/Tetherin, a new restriction factor of respiratory syncytial virus, requires the viral NS1 protein.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in PLoS pathogens - 19 Nov 2024

Marougka K, Judith D, Jaouen T, Blouquit-Laye S, Cosentino G, Berlioz-Torrent C, Rameix-Welti MA, Sitterlin D

Link to Pubmed [PMID] – 39561185

Link to DOI – 10.1371/journal.ppat.1012687

PLoS Pathog 2024 Nov; 20(11): e1012687

Human respiratory syncytial virus (RSV) is an enveloped RNA virus and the leading viral agent responsible for severe pediatric respiratory infections worldwide. Identification of cellular factors able to restrict viral infection is one of the key strategies used to design new drugs against infection. Here, we report for the first time that the cellular protein BST2/Tetherin (a widely known host antiviral molecule) behaves as a restriction factor of RSV infection. We showed that BST2 silencing resulted in a significant rise in viral production during multi-cycle infection, suggesting an inhibitory role during the late steps of RSV’s multiplication cycle. Conversely, BST2 overexpression resulted in diminution of the viral production. Furthermore, BST2 was found associated with envelope proteins and co-localized with viral filaments, suggesting that BST2 tethers RSV particles. Interestingly, RSV naturally downregulates cell surface and global BST2 expression, possibly through a mechanism dependent on ubiquitin. RSV’s ability to enhance BST2 degradation was also validated in a model of differentiated cells infected by RSV. Additionally, we found that a virus deleted of NS1 is unable to downregulate BST2 and is significantly more susceptible to BST2 restriction compared to the wild type virus. Moreover, NS1 and BST2 interact in a co- immunoprecipitation experiment. Overall, our data support a model in which BST2 is a restriction factor against RSV infection and that the virus counteracts this effect by limiting the cellular factor’s expression through a mechanism involving the viral protein NS1.