Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© K. Melican.
Human microvessel (red) colonized by N. meningitidis (green).
Publication : Cytoskeleton (Hoboken, N.J.)

Keratinocytes are mechanoresponsive to the microflow-induced shear stress.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Cytoskeleton (Hoboken, N.J.) - 01 Feb 2019

Agarwal T, Narayana GH, Banerjee I

Link to Pubmed [PMID] – 30969461

Link to DOI – 10.1002/cm.21521

Cytoskeleton (Hoboken) 2019 Feb; 76(2): 209-218

Here, we have reported that keratinocytes respond to the microflow-induced shear stress both at the collective and individual cell level. Using a microfluidic setup, we categorically showed that low shear stress of magnitude 0.06 dyne/cm2 could induce morphological variation and cytoskeletal reorganization in keratinocyte, whereas higher shear stress (6 dyne/cm2 ) resulted in cellular disruption. Using a series of blocker molecules specific to different mechanotransducers, we demonstrated the pivotal role of actin network in keratinocyte mechanoresponsiveness in conjugation with myosin and lipid rafts. Flow-induced shear stress also induced significant elevation in E-cadherin and Zonula occludens-1 (ZO-1) expression levels. We further showed that under the influence of shear stress, the extent of colocalization of E-cadherin and ZO-1 was more at the cell-cell junction that indicates an improvement in the epithelial phenotype. An increase in the expression of nuclear lamin was also observed in the sheared cells that suggest the transmission of mechanical signals to the nucleus. It is envisioned that this study may find its application in basic and applied organogenesis of the epidermis.