Lien vers Pubmed [PMID] – 10924946
Neuroscience 2000;99(1):1-5
The ability to recall past events is a major determinant of survival strategies in all species and is of paramount importance in determining our uniqueness as individuals. In contrast to memory formation, the information about the molecular mechanisms of memory retrieval is surprisingly scarce and fragmentary. Here we show that pretest inhibition of the specific upstream activator of mitogen-activated protein kinase kinase, or of protein kinase A in the hippocampus, blocked retrieval of long-term memory for an inhibitory avoidance task, a hippocampal-dependent learning task. An activator of protein kinase A enhanced retrieval. Mitogen-activated protein kinase activation increased in the hippocampus during retrieval, while protein kinase A activity remained unchanged. Pretest intrahippocampal blockade of metabotropic glutamate receptors or alpha-amino-3-hydroxy-5-methyl-4-isoxazolone propionic acid/kainate receptors, but not N-methyl-D-aspartate receptors or calcium/calmodulin dependent-protein kinase II, impaired retrieval. Thus, recall of inhibitory avoidance activates mitogen-activated protein kinase, which is necessary, along with metabotropic glutamate receptors, alpha-amino-3-hydroxy-5-methyl-4-isoxazolone propionic acid/kainate receptors, and protein kinase A, for long-term memory expression. Our results indicate that memory formation and retrieval may share some molecular mechanisms in the hippocampus.