Lien vers Pubmed [PMID] – 28334157
FEMS Microbiol. Ecol. 2017 04;93(4)
Although they are widespread, diverse and involved in biogeochemical cycles, microbial eukaryotes attract less attention than their prokaryotic counterparts in environmental microbiology. In this study, we used publicly available 18S barcoding data to define biases that may limit such analyses and to gain an overview of the planktonic microbial eukaryotic diversity in freshwater ecosystems. The richness of the microbial eukaryotes was estimated to 100 798 operational taxonomic units (OTUs) delineating 1267 clusters or phylogenetic units (PUs, i.e. monophyletic groups of OTUs that are phylogenetically close). By summing the richness found in aquatic environments, we can predict the microbial eukaryotic richness to be around 200 000-250 000 species. The molecular diversity of protists in freshwater environments is generally higher than that of the morphospecies and cultivated species catalogued in public databases. Amoebozoa, Viridiplantae, Ichthyosporea, and Cryptophyta are the most phylogenetically diverse taxa, and characterisation of these groups is still needed. A network analysis showed that Fungi, Stramenopiles and Viridiplantae play central role in lake ecosystems. Finally, this work provides guidance for compiling metabarcoding data and identifies missing data that should be obtained to increase our knowledge on microbial eukaryote diversity.