Lien vers Pubmed [PMID] – 21321208
Proc. Natl. Acad. Sci. U.S.A. 2011 Mar;108(9):3612-7
Mitochondria are essential and highly dynamic organelles, constantly undergoing fusion and fission. We analyzed mitochondrial dynamics during infection with the human bacterial pathogen Listeria monocytogenes and show that this infection profoundly alters mitochondrial dynamics by causing transient mitochondrial network fragmentation. Mitochondrial fragmentation is specific to pathogenic Listeria monocytogenes, and it is not observed with the nonpathogenic Listeria innocua species or several other intracellular pathogens. Strikingly, the efficiency of Listeria infection is affected in cells where either mitochondrial fusion or fission has been altered by siRNA treatment, highlighting the relevance of mitochondrial dynamics for Listeria infection. We identified the secreted pore-forming toxin listeriolysin O as the bacterial factor mainly responsible for mitochondrial network disruption and mitochondrial function modulation. Together, our results suggest that the transient shutdown of mitochondrial function and dynamics represents a strategy used by Listeria at the onset of infection to interfere with cellular physiology.