Lien DOI – https://doi.org/10.1128/aem.00207-22
Partitioning systems ensure the stable inheritance of bacterial low-copy-number replicons, such as chromosomes, chromids, and megaplasmids. These loci consist of two genes encoding partition proteins A and B, and at least one parS centromere-like sequence. In chromids and megaplasmids, partitioning systems are often located in the vicinity of replication systems. An extreme example of this co-localization are alphaproteobacterial repABC replicons, where the partition (repAB) and replication (repC) genes form a single operon, with parS sequences usually positioned in close proximity to these genes. In this study, we characterized a more complex repABC system found in Paracoccus aminophilus (Rhodobacterales) megaplasmid pAMI4 (438 kb). Besides the repABC operon with a single parS site, this replicon has a 2-kb non-coding locus positioned 11.5 kb downstream of repC, which contains three additional parS repeats (3parS). We demonstrated that 3parS is bound by partition protein B in vitro and is essential for proper pAMI4 partitioning in vivo. In search of similar loci, we conducted a comparative analysis of parS distribution in other repABC replicons. This revealed different patterns of parS localization in Rhodobacterales and Rhizobiales. However, in both these taxonomic orders, parS sites are almost always located inside or close to the repABC operon. No other 3parS-like loci were found in the closest relatives of pAMI4. Another evolutionarily-independent example of such a locus was identified as a conserved feature in chromosome 2 of Allorhizobium vitis and related replicons.