Lien vers Pubmed [PMID] – 11282984
Int. Immunol. 2001 Apr;13(4):451-8
Although CD4(+) T cells are essential for protective immunity against Mycobacterium tuberculosis infection, recent reports indicate that CD8(+) T cells may also play a critical role in the control of this infection. However, the epitope specificity and the mechanisms of activation of mycobacteria-reactive CD8(+) T cells are poorly characterized. In order to study the CD8(+) T cell responses to the model mycobacterial antigen, MPT64, we used recombinant vaccinia virus expressing MPT64 (VVWR-64) and a panel of MPT64-derived peptides to establish that the peptide MPT64(190-198) contains an H-2D(b)-restricted CD8(+) T cell epitope. A cytotoxic T lymphocyte response to this peptide could be demonstrated in M. bovis bacillus Calmette Guerin (BCG)-infected mice following repeated in vitro stimulation. When bone marrow-derived dendritic cells (DC) were infected with BCG, the expression of MHC class I molecules by DC was up-regulated in parallel with MHC class II and B7-2, whereas CD1d expression level was not modified. Moreover, BCG-infected DC activated MPT64(190-198)-specific CD8(+) T cells to secrete IFN-gamma, although with a lower efficacy than VVWR-64-infected DC. The production of IFN-gamma by MPT64(190-198)-specific CD8(+) T cells was inhibited by antibodies to MHC class I, but not to CD1d. These data suggest that mycobacteria-specific CD8(+) T cells are primed during infection. Therefore, anti-mycobacterial vaccine strategies targeting the activation of specific CD8(+) T cells by DC may have improved protective efficacy.