Lien vers Pubmed [PMID] – 21268016
Eur. J. Immunol. 2011 Feb;41(2):473-84
Rejection of solid organ allograft involves alloreactive T-cell expansion. The importance of NF-κB and NFAT in this process is underscored by the therapeutic efficacy of immunosuppressive agents, which target the two transcription factors. Since calpains, calcium-activated proteases, are involved in the activation of NF-κB and NFAT, we investigated the role of calpains in allograft rejection. In human transplant kidneys undergoing acute or chronic rejection, we show an increased expression of CAPN 1 gene encoding μ-calpain, associated with a marked expression of μ-calpain, mainly in infiltrating T cells. To address the role of calpain in rejection, we used a skin transplant model in transgenic mice expressing high levels of calpastatin, a calpain-specific inhibitor. We show that calpain inhibition extended skin allograft survival, from 11 to 20 days. This delay was associated with a limitation in allograft infiltration by T cells. In vitro, calpain inhibition by calpastatin transgene expression limited dramatically T-cell migration but, unexpectedly, increased slightly T-cell proliferation. Amplification of IL-2 signaling via the stabilization of IL-2R common γ-chain provided an explanation for the proliferation response. This is the first study establishing that calpain inhibition delays allograft rejection by slowing down T-cell migration rather than proliferation.