Lien vers Pubmed [PMID] – 21115741
Eukaryotic Cell 2011 Jan;10(1):72-80
The Candida albicans plasma membrane plays important roles in interfacing with the environment, morphogenesis, and cell wall synthesis. The role of the Sur7 protein in cell wall structure and function was analyzed, since previous studies showed that this plasma membrane protein is needed to prevent abnormal intracellular growth of the cell wall. Sur7 localizes to stable patches in the plasma membrane, known as MCC (membrane compartment occupied by Can1), that are associated with eisosome proteins. The sur7Δ mutant cells displayed increased sensitivity to factors that exacerbate cell wall defects, such as detergent (SDS) and the chitin-binding agents calcofluor white and Congo red. The sur7Δ cells were also slightly more sensitive to inhibitors that block the synthesis of cell wall chitin (nikkomycin Z) and β-1,3-glucan (caspofungin). In contrast, Fmp45, a paralog of Sur7 that also localizes to punctate plasma membrane patches, did not have a detectable role in cell wall synthesis. Chemical analysis of cell wall composition demonstrated that sur7Δ cells contain decreased levels of β-glucan, a glucose polymer that confers rigidity on the cell wall. Consistent with this, sur7Δ cells were more sensitive to lysis, which could be partially rescued by increasing the osmolarity of the medium. Interestingly, Sur7 is present in static patches, whereas β-1,3-glucan synthase is mobile in the plasma membrane and is often associated with actin patches. Thus, Sur7 may influence β-glucan synthesis indirectly, perhaps by altering the functions of the cell signaling components that localize to the MCC and eisosome domains.