Lien vers Pubmed [PMID] – 12077266
J. Immunol. 2002 Jul;169(1):366-74
Type I IFN regulates different aspects of the immune response, inducing a cell-mediated immunity. We have recently shown that the infection of dendritic cells (DC) with Mycobacterium tuberculosis (Mtb) induces IFN-alpha. In this work we have monitored a rapid induction of IFN-beta followed by the delayed production of the IFN-alpha1 and/or -alpha13 subtypes. The Mtb infection rapidly activates the NF-kappaB complex and stimulates the phosphorylation of IFN regulatory factor (IRF)-3, events known to induce IFN-beta expression in viral infection. In turn, the autocrine production of IFN-beta induces the IFN-stimulated genes that contain binding sites for activated STATs in their promoters. Among the IFN-stimulated genes induced in DC through STAT activation are IRF-1 and IRF-7. The expression of IRF-1 appears to be dependent on the sequential activation of NF-kappaB and STAT-1. Once expressed, IRF-1 may further stimulate the transcription of IFN-beta. Induction of IRF-7 is also regulated at the transcriptional level through the binding of phosphorylated STAT-1 and STAT-2, forming the IFN-stimulated gene factor-3 complex. In turn, the IRF-1 and IRF-7 expression appears to be required for the delayed induction of the IFN-alpha1/13 genes. Although correlative, our results strongly support the existence of a cascade of molecular events in Mtb-infected DC. Upon infection, constitutively expressed NF-kappaB and IRF-3 are activated and likely contribute to the rapid IFN-beta expression. In turn, IFN-beta-induced IRF-1 and IRF-7 may cooperate toward induction of IFN-alpha1/13 if infection persists and these factors are activated.