Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Risk analysis : an official publication of the Society for Risk Analysis

The Bayesian microbial subtyping attribution model: robustness to prior information and a proposition

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Risk analysis : an official publication of the Society for Risk Analysis - 08 Aug 2012

David JM, Guillemot D, Bemrah N, Thébault A, Brisabois A, Chemaly M, Weill FX, Sanders P, Watier L

Link to Pubmed [PMID] – 22882110

Risk Anal. 2013 Mar;33(3):397-408

Attributing foodborne illnesses to food sources is essential to conceive, prioritize, and assess the impact of public health policy measures. The Bayesian microbial subtyping attribution model by Hald et al. is one of the most advanced approaches to attribute sporadic cases; it namely allows taking into account the level of exposure to the sources and the differences between bacterial types and between sources. This step forward requires introducing type and source-dependent parameters, and generates overparameterization, which was addressed in Hald’s paper by setting some parameters to constant values. We question the impact of the choices made for the parameterization (parameters set and values used) on model robustness and propose an alternative parameterization for the Hald model. We illustrate this analysis with the 2005 French data set of non-typhi Salmonella. Mullner’s modified Hald model and a simple deterministic model were used to compare the results and assess the accuracy of the estimates. Setting the parameters for bacterial types specific to a unique source instead of the most frequent one and using data-based values instead of arbitrary values enhanced the convergence and adequacy of the estimates and led to attribution estimates consistent with the other models’ results. The type and source parameters estimates were also coherent with Mullner’s model estimates. The model appeared to be highly sensitive to parameterization. The proposed solution based on specific types and data-based values improved the robustness of estimates and enabled the use of this highly valuable tool successfully with the French data set.