Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Royal Society open science

The 2013 Chikungunya outbreak in the Caribbean was structured by the network of cultural relationships among islands.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Royal Society open science - 01 Sep 2023

Dommar CJ, López L, Paul R, Rodó X

Link to Pubmed [PMID] – 37711149

Link to DOI – 10.1098/rsos.230909

R Soc Open Sci 2023 Sep; 10(9): 230909

In 2013, the Caribbean underwent an unprecedented epidemic of Chikungunya that affected 29 islands and mainland territories throughout the Caribbean in the first six months. Analysing the spread of the epidemic among the Caribbean islands, we show that the initial patterns of the epidemic can be explained by a network model based on the flight connections among islands. The network does not follow a random graph model and its topology is likely the product of geo-political relationships that generate increased connectedness among locations sharing the same language. Therefore, the infection propagated preferentially among islands that belong to the same cultural domain, irrespective of their human and vector population densities. Importantly, the flight network topology was also a more important determinant of the disease dynamics than the actual volume of traffic. Finally, the severity of the epidemic was found to depend, in the first instance, on which island was initially infected. This investigation shows how a simple epidemic model coupled with an appropriate human mobility model can reproduce the observed epidemiological dynamics. Also, it sheds light on the design of interventions in the face of the emergence of infections in similar settings of naive subpopulations loosely interconnected by host movement. This study delves into the feasibility of developing models to anticipate the emergence of vector-borne infections, showing the importance of network topology, bringing valuable methods for public health officials when planning control policies. Significance statement: The study shows how a simple epidemic model associated with an appropriate human mobility model can reproduce the observed epidemiological dynamics of the 2014 Chikungunya epidemic in the Caribbean region. This model sheds light on the design of interventions in the face of the emergence of infections in similar settings of naive subpopulations loosely interconnected by the host.