Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Protein engineering

Role of the tyrosine corner motif in the stability of neocarzinostatin

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Protein engineering - 01 Oct 2003

Nicaise M, Valerio-Lepiniec M, Izadi-Pruneyre N, Adjadj E, Minard P, Desmadril M

Link to Pubmed [PMID] – 14600202

Protein Eng. 2003 Oct;16(10):733-8

Although the immunoglobulin-like beta-sandwich fold has no specifically conserved function, some common structural features have been observed, in particular a structural motif, the tyrosine corner. Such a motif was described in neocarzinostatin (NCS), a bacterial protein the structure of which is very similar to that of the immunoglobulin domain. Compared with the other beta-sheet proteins, the NCS ‘tyrosine corner’ presents non-standard structural features. To investigate the role of this motif in the NCS structure and stability, we studied the properties of a mutant where the H bond interaction had been eliminated by replacing the tyrosine with a phenylalanine. This mutation costs 4.0 kcal/mol showing that the NCS ‘tyrosine corner’ is involved in protein stability as in the other Greek key proteins. This destabilization is accompanied by remote structural effects, including modification of the binding properties, suggesting an increase in the internal flexibility of the protein. With a view to using this protein for drug targeting, these results along with those obtained previously allow us to define clearly the limitations of the modifications that can be performed on this scaffold.