Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : PLoS pathogens

Quantifying plasmid movement in drug-resistant Shigella species using phylodynamic inference.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in PLoS pathogens - 01 Dec 2025

Müller NF, Wick RR, Judd LM, Williamson DA, Bedford T, Howden BP, Duchêne S, Ingle DJ

Link to Pubmed [PMID] – 41325432

Link to DOI – 10.1371/journal.ppat.1013621

PLoS Pathog 2025 Dec; 21(12): e1013621

The ‘silent pandemic’ of antimicrobial resistance (AMR) represents a significant global public health threat. AMR genes in bacteria are often carried on mobile elements, such as plasmids. The horizontal movement of plasmids allows AMR genes and resistance to key therapeutics to disseminate in a population. However, the quantification of the movement of plasmids remains challenging with existing computational approaches. Here, we introduce a novel method that allows us to reconstruct and quantify the movement of plasmids in bacterial populations over time. To do so, we model chromosomal and plasmid DNA co-evolution using a joint coalescent and plasmid transfer process in a Bayesian phylogenetic network approach. This approach reconstructs differences in the evolutionary history of plasmids and chromosomes to reconstruct instances where plasmids likely move between bacterial lineages while accounting for parameter uncertainty. We apply this new approach to a five-year dataset of Shigella, exploring the plasmid transfer rates of five different plasmids with different AMR and virulence profiles. In doing so, we reconstruct the co-evolution of the large Shigella virulence plasmid with the chromosome DNA. We quantify higher plasmid transfer rates of three small plasmids that move between lineages of Shigella sonnei. Finally, we determine the recent dissemination of a multidrug-resistant plasmid between S. sonnei and S. flexneri lineages in multiple independent events and through steady growth in prevalence since 2010. This approach has a strong potential to improve our understanding of the evolutionary dynamics of AMR-carrying plasmids as they are introduced, circulate, and are maintained in bacterial populations.