Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Journal of proteome research

Proteome profiling and functional classification of intracellular proteins from conidia of the human-pathogenic mold Aspergillus fumigatus.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of proteome research - 01 Jul 2010

Teutschbein J, Albrecht D, Pötsch M, Guthke R, Aimanianda V, Clavaud C, Latgé JP, Brakhage AA, Kniemeyer O,

Link to Pubmed [PMID] – 20507060

Link to DOI – 10.1021/pr9010684

J Proteome Res 2010 Jul; 9(7): 3427-42

Aspergillus fumigatus is a ubiquitously distributed filamentous fungus that has emerged as one of the most serious life-threatening pathogens in immunocompromised patients. The mechanisms for its pathogenicity are poorly understood. Here, we analyzed the proteome of dormant A. fumigatus conidia as the fungal entity having the initial contact with the host. Applying two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), we established a 2-D reference map of conidial proteins. By MALDI-TOF mass spectrometry, we identified a total number of 449 different proteins. We show that 57 proteins of our map are over-represented in resting conidia compared to mycelium. Enzymes involved in reactive oxygen intermediates (ROI) detoxification, pigment biosynthesis, and conidial rodlet layer formation were highly abundant in A. fumigatus spores and most probably account for their enormous stress resistance. Interestingly, pyruvate decarboxylase and alcohol dehydrogenase were detectable in dormant conidia, suggesting that alcoholic fermentation plays a role during dormancy or early germination. Moreover, we show that enzymes for rapid reactivation of protein biosynthesis and metabolic processes are preserved in resting conidia, which therefore feature the potential to immediately respond to an environmental stimulus by germination. The generated data lay the foundations for further proteomic analyses and a better understanding of fungal pathogenesis.