Link to Pubmed [PMID] – 28301773
Link to DOI – 10.1146/annurev-biophys-070816-033555
Annu Rev Biophys 2017 May; 46(): 1-21
Electron cryotomography (ECT) can produce three-dimensional images of biological samples such as intact cells in a near-native, frozen-hydrated state to macromolecular resolution (∼4 nm). Because one of its first and most common applications has been to bacterial chemoreceptor arrays, ECT’s contributions to this field illustrate well its past, present, and future. While X-ray crystallography and nuclear magnetic resonance spectroscopy have revealed the structures of nearly all the individual components of chemoreceptor arrays, ECT has revealed the mesoscale information about how the components are arranged within cells. Receptors assemble into a universally conserved 12-nm hexagonal lattice linked by CheA/CheW rings. Membrane-bound arrays are single layered; cytoplasmic arrays are double layered. Images of in vitro reconstitutions have led to a model of how arrays assemble, and images of native arrays in different states have shown that the conformational changes associated with signal transduction are subtle, constraining models of activation and system cooperativity. Phase plates, better detectors, and more stable stages promise even higher resolution and broader application in the near future.