Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Contributions to nephrology

Pathophysiology of sepsis-induced acute kidney injury: the role of global renal blood flow and renal vascular resistance

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Contributions to nephrology - 09 Sep 2011

Bouglé A, Duranteau J

Link to Pubmed [PMID] – 21921613

Contrib Nephrol 2011;174:89-97

Sepsis-induced acute kidney injury (AKI) is the most common form of AKI observed in critically ill patients. AKI mortality in septic critically ill patients remains high despite our increasing ability to support vital organ systems. This high mortality is partly due to our poor understanding of the pathophysiological mechanisms of sepsis-induced AKI. Recent experimental studies have suggested that the pathogenesis of sepsis-induced AKI is much more complex than isolated hypoperfusion due to decreased cardiac output and hypotension. In nonresuscitated septic patients with a low cardiac output, a decrease in renal blood flow (RBF) could contribute to the development of AKI. In resuscitated septic patients with a hyperdynamic circulatory state, RBF is unchanged or increased. However, in resuscitated septic patients, sepsis-induced AKI can occur in the setting of renal hyperemia in the absence of renal hypoperfusion or renal ischemia. Alterations in the microcirculation in the renal cortex or renal medulla can occur despite normal or increased global RBF. Increased renal vascular resistance (RVR) may represent a key hemodynamic factor that is involved in sepsis-associated AKI. Sepsis-induced renal microvascular alterations (vasoconstriction, capillary leak syndrome with tissue edema, leukocytes and platelet adhesion with endothelial dysfunction and/or microthrombosis) and/or an increase in intra-abdominal pressure could contribute to an increase in RVR. Further studies are needed to explore the time course of renal microvascular alterations during sepsis as well as the initiation and development of AKI. Doppler ultrasonography combined with the calculation of the resistive indices may indicate the extent of the vascular resistance changes and may help predict persistent AKI and determine the optimal systemic hemodynamics required for renal perfusion.