Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Physiology (Bethesda, Md.)

Organelle dysfunction and TNT-mediated aggregate spreading in neurodegeneration.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Physiology (Bethesda, Md.) - 16 Jan 2026

Thomas V, Zurzolo C

Link to Pubmed [PMID] – 41543365

Link to DOI – 10.1152/physiol.00048.2025

Physiology (Bethesda) 2026 Jan; ():

Organelle dysfunction is a central hallmark of neurodegenerative diseases (NDs), which are characterized by the pathological accumulation of misfolded proteins capable of inducing aggregation in healthy cells. This process generates a self-perpetuating cycle of protein misfolding and spreading across interconnected neuronal networks. In this review, we provide an integrated overview of organelle alterations associated with major NDs, emphasizing the pivotal roles of lysosomes, mitochondria, and the endoplasmic reticulum (ER) at the crossroads of proteostasis, metabolism, and stress signaling. We examine how defects in these organelles create conditions that favor aggregate formation and cellular vulnerability, with a focus on α-synuclein and Tau, the main aggregating proteins in Parkinson’s and Alzheimer’s diseases, respectively. We then explore mechanisms of intercellular protein transfer, highlighting the emerging role of tunneling nanotubes (TNTs). We discuss how organelle status influences TNT formation and cargo selection, and how TNTs may act as conduits for the propagation of pathogenic aggregates. Finally, we summarize the downstream consequences of TNT-mediated transfer in recipient cells, including alterations in the autophagy-lysosomal pathway, TFEB-dependent transcription, mitochondrial stress responses, calcium homeostasis, and inflammatory or senescent signaling. Together, these insights underscore the intertwined roles of organelle dysfunction and TNT-mediated communication in driving the progression of NDs and suggest new therapeutic avenues aimed at restoring organelle function and limiting aggregate spread.