Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Differentiation; research in biological diversity

Myf5, MyoD, myogenin and MRF4 myogenic derivatives of the embryonic mesenchymal cell line C3H10T1/2 exhibit the same adult muscle phenotype

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Differentiation; research in biological diversity - 01 Feb 1994

Auradé F, Pinset C, Chafey P, Gros F, Montarras D

Link to Pubmed [PMID] – 8187980

Differentiation 1994 Feb;55(3):185-92

Cells of the embryonic mesenchymal cell line C3H10T1/2 have revealed the potential that the four regulatory factors belonging to the MyoD family have to activate myogenesis. In the present study we have further investigated the myogenic phenotype of C3H10T1/2 cells stably transfected with either Myf5, MyoD, myogenin or MRF4 cDNAs. We have studied the influence of each transfected cDNA on expression of the four endogenous muscle regulatory genes and on the ability of these embryonic myogenic derivatives to express adult muscle genes. No trace of endogenous transcripts distinct from the exogenous one was found in any of the four converted populations at the myoblast stage. This indicates that cross-activation within the MyoD family does not occur at the myoblast stage in these cells. Similarly, evidence was obtained that auto- or cross-activation of the Myf5 gene occurs neither at the myoblast stage nor at the myotube stage and that no autoactivation of the MRF4 gene occurs. Our results together with previous observations indicate that in C3H10T1/2 myogenic derivatives: (1) Autoactivation at the myoblast stage is restricted to MyoD (2) Expression from each cDNA alone is sufficient to establish and maintain the myoblast phenotype (3) The endogenous Myf5 gene is not mobilized. We have also observed that endogenous transcripts for MyoD and myogenin begin to accumulate at the onset of differentiation in the four myogenic derivatives, whereas accumulation of endogenous MRF4 transcripts starts after myotubes have formed and occurs at a much lower level (100- to 500-fold lower) than in differentiated cultures of myosatellite cells.(ABSTRACT TRUNCATED AT 250 WORDS)