Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : The Journal of biological chemistry

Monomethyl branched-chain fatty acids are critical for Caenorhabitis elegans survival in elevated glucose conditions.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The Journal of biological chemistry - 01 Feb 2022

Vieira AFC, Xatse MA, Tifeki H, Diot C, Walhout AJM, Olsen CP,

Link to Pubmed [PMID] – 34826420

Link to DOI – 10144410.1016/j.jbc.2021.101444S0021-9258(21)01253-9

J Biol Chem 2022 Feb; 298(2): 101444

The maintenance of optimal membrane composition under basal and stress conditions is critical for the survival of an organism. High-glucose stress has been shown to perturb membrane properties by decreasing membrane fluidity, and the membrane sensor PAQR-2 is required to restore membrane integrity. However, the mechanisms required to respond to elevated dietary glucose are not fully established. In this study, we used a 13C stable isotope-enriched diet and mass spectrometry to better understand the impact of glucose on fatty acid dynamics in the membrane of Caenorhabditis elegans. We found a novel role for monomethyl branched-chain fatty acids (mmBCFAs) in mediating the ability of the nematodes to survive conditions of elevated dietary glucose. This requirement of mmBCFAs is unique to glucose stress and was not observed when the nematode was fed elevated dietary saturated fatty acid. In addition, when worms deficient in elo-5, the major biosynthesis enzyme of mmBCFAs, were fed Bacillus subtilis (a bacteria strain rich in mmBCFAs) in combination with high glucose, their survival rates were rescued to wild-type levels. Finally, the results suggest that mmBCFAs are part of the PAQR-2 signaling response during glucose stress. Taken together, we have identified a novel role for mmBCFAs in stress response in nematodes and have established these fatty acids as critical for adapting to elevated glucose.