Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Journal of immunology (Baltimore, Md. : 1950)

Local immune response to injection of Plasmodium sporozoites into the skin

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of immunology (Baltimore, Md. : 1950) - 30 Jun 2014

Mac-Daniel L, Buckwalter MR, Berthet M, Virk Y, Yui K, Albert ML, Gueirard P, Ménard R

Link to Pubmed [PMID] – 24981449

J. Immunol. 2014 Aug;193(3):1246-57

Malarial infection is initiated when the sporozoite form of the Plasmodium parasite is inoculated into the skin by a mosquito. Sporozoites invade hepatocytes in the liver and develop into the erythrocyte-infecting form of the parasite, the cause of clinical blood infection. Protection against parasite development in the liver can be induced by injection of live attenuated parasites that do not develop in the liver and thus do not cause blood infection. Radiation-attenuated sporozoites (RAS) and genetically attenuated parasites are now considered as lead candidates for vaccination of humans against malaria. Although the skin appears as the preferable administration route, most studies in rodents, which have served as model systems, have been performed after i.v. injection of attenuated sporozoites. In this study, we analyzed the early response to Plasmodium berghei RAS or wild-type sporozoites (WTS) injected intradermally into C57BL/6 mice. We show that RAS have a similar in vivo distribution to WTS and that both induce a similar inflammatory response consisting of a biphasic recruitment of polymorphonuclear neutrophils and inflammatory monocytes in the skin injection site and proximal draining lymph node (dLN). Both WTS and RAS associate with neutrophils and resident myeloid cells in the skin and the dLN, transform inside CD11b(+) cells, and induce a Th1 cytokine profile in the dLN. WTS and RAS are also similarly capable of priming parasite-specific CD8(+) T cells. These studies delineate the early and local response to sporozoite injection into the skin, and suggest that WTS and RAS prime the host immune system in a similar fashion.