Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : International journal of audiology

Inference of the distortion component of hearing impairment from speech recognition by predicting the effect of the attenuation component.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in International journal of audiology - 01 Mar 2022

Hülsmeier D, Buhl M, Wardenga N, Warzybok A, Schädler MR, Kollmeier B

Link to Pubmed [PMID] – 34081564

Link to DOI – 10.1080/14992027.2021.1929515

Int J Audiol 2022 Mar; 61(3): 205-219

A model-based determination of the average supra-threshold (“distortion”) component of hearing impairment which limits the benefit of hearing aid amplification.Published speech recognition thresholds (SRTs) were predicted with the framework for auditory discrimination experiments (FADE), which simulates recognition processes, the speech intelligibility index (SII), which exploits frequency-dependent signal-to-noise ratios (SNR), and a modified SII with a hearing-loss-dependent band importance function (PAV). Their attenuation-component-based prediction errors were interpreted as estimates of the distortion component.Unaided SRTs of 315 hearing-impaired ears measured with the German matrix sentence test in stationary noise.Overall, the models showed root-mean-square errors (RMSEs) of 7 dB, but for steeply sloping hearing loss FADE and PAV were more accurate (RMSE = 9 dB) than the SII (RMSE = 23 dB). Prediction errors of FADE and PAV increased linearly with the average hearing loss. The consideration of the distortion component estimate significantly improved the accuracy of FADE’s and PAV’s predictions.The supra-threshold distortion component-estimated by prediction errors of FADE and PAV-seems to increase with the average hearing loss. Accounting for a distortion component improves the model predictions and implies a need for effective compensation strategies for supra-threshold processing deficits with increasing audibility loss.