Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : The Journal of biological chemistry

In vivo reshaping the catalytic site of nucleoside 2′-deoxyribosyltransferase for dideoxy- and didehydronucleosides via a single amino acid substitution

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The Journal of biological chemistry - 16 May 2008

Kaminski PA, Dacher P, Dugué L, Pochet S

Link to Pubmed [PMID] – 18487606

J. Biol. Chem. 2008 Jul;283(29):20053-9

Nucleoside 2′-deoxyribosyltransferases catalyze the transfer of 2-deoxyribose between bases and have been widely used as biocatalysts to synthesize a variety of nucleoside analogs. The genes encoding nucleoside 2′-deoxyribosyltransferase (ndt) from Lactobacillus leichmannii and Lactobacillus fermentum underwent random mutagenesis to select variants specialized for the synthesis of 2′,3′-dideoxynucleosides. An Escherichia coli strain, auxotrophic for uracil and unable to use 2′,3′-dideoxyuridine, cytosine, and 2′,3′-dideoxycytidine as a source of uracil was constructed. Randomly mutated lactobacilli ndt libraries from two species, L. leichmannii and L. fermentum, were screened for the production of uracil with 2′,3′-dideoxyuridine as a source of uracil. Several mutants suitable for the synthesis of 2′,3′-dideoxynucleosides were isolated. The nucleotide sequence of the corresponding genes revealed a single mutation (G –> A transition) leading to the substitution of a small aliphatic amino acid by a nucleophilic one, A15T (L. fermentum) or G9S (L. leichmannii), respectively. We concluded that the “adaptation” of the nucleoside 2′-deoxyribosyltransferase activity to 2,3-dideoxyribosyl transfer requires an additional hydroxyl group on a key amino acid side chain of the protein to overcome the absence of such a group in the corresponding substrate. The evolved proteins also display significantly improved nucleoside 2′,3′-didehydro-2′,3′-dideoxyribosyltransferase activity.