Link to Pubmed [PMID] – 22706118
Postepy Hig Med Dosw (Online) 2012 Jun;66:322-9
Recombinant proteins and enzymes are commonly used in many areas of our life, such as diagnostics, industry and medicine, due to heterologous synthesis in prokaryotic expression systems. However, a high expression level of foreign protein in bacteria cells results in formation of inactive and insoluble aggregates–inclusion bodies. Reactivation of aggregated proteins is a complex and time-consuming process. Every protein requires experimental optimization of the process conditions. The choice of the refolding method depends on the type of recombinant protein and its physical, chemical and biological properties. Recovery of the activity of proteins accumulated in inclusion bodies can be divided into 4 steps: 1) inclusion bodies isolation, 2) solubilization of aggregates, 3) renaturation, 4) purification of catalytically active molecules. Efficiency of the refolding process depends on many physical factors and chemical and biological agents. The above parameters determine the time of the folding and prevent protein aggregation. They also assist the folding and have an influence on the solubility and stability of native molecules. To date, dilution, dialysis and chromatography are the most often used methods for protein refolding.