Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Antiviral research

High efficient production of Pr55(gag) virus-like particles expressing multiple HIV-1 epitopes, including a gp120 protein derived from an Ugandan HIV-1 isolate of subtype A

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Antiviral research - 01 Jan 2001

Buonaguro L, Buonaguro FM, Tornesello ML, Mantas D, Beth-Giraldo E, Wagner R, Michelson S, Prevost MC, Wolf H, Giraldo G

Link to Pubmed [PMID] – 11166859

Antiviral Res. 2001 Jan;49(1):35-47

The main goal of this study was to investigate a novel approach for an efficient and reproducible production of Virus-Like Particles (VLPs) expressing multiple HIV-1 epitopes. The HIV-1 Pr55(gag)-based VLPs have been produced in a Baculovirus expression system, using a transfer vector able to support the independent expression of different open reading frames (ORFs). In this regard, the gp120 derived from 94UG018 HIV-1(A) isolate, previously studied in our laboratory, has been packaged into the VLPs together with nef and pol ORFs. In particular, the gp120(UG) sequence shows a 90% homology in the V3 region compared to African HIV-1 strains of the A-clade. This novel approach is extremely effective for the production of VLPs expressing all the epitopes, as confirmed by Western Blot characterization. Furthermore, the resulting HIV-VLP(A)s show the expected density (1.14–1.18 g/ml) on a 10–60% sucrose gradient and the morphology of an immature virion at standard transmission electron microscopy. Our results demonstrate that this strategy is highly efficient for expressing a balanced amount of multiple epitopes and their packaging in VLP structures, without affecting the Pr55(gag) autoassembling capacities. Furthermore, the genetic transposition performed in a modified E. coli represents a methodological improvement, allowing a faster and more reproducible identification of recombinant Baculovirus DNA molecules.