Link to Pubmed [PMID] – 15001986
Oncogene 2004 Mar;23(9):1737-44
Mutations in the tumor-suppressor gene p53 have been associated with advanced colorectal cancer (CRC). Irinotecan (CPT-11), a DNA topoisomerase 1 inhibitor, has been recently incorporated to the adjuvant therapy. Since the DNA-damage checkpoint depends on p53 activation, the status of p53 might critically influence the response to CPT-11. We analysed the sensitivity to CPT-11 in the human colon cancer cell line HT29 (mut p53) and its wild-type (wt)-p53 stably transfected subclone HT29-A4. Cell-cycle analysis in synchronised cells demonstrated the activation of transfected wt-p53 and a p21(WAF1/CIP1)-dependent cell-cycle blockage in the S phase. Activated wt-p53 increased apoptosis and enhanced sensitivity to CPT-11. In p53-deficient cells, cDNA-macroarray analysis and western blotting showed an accumulation of the cyclin-dependent kinase (cdk)1/cyclin B complex. Subsequent p53-independent activation of the cdk-inhibitor (cdk-I) p21(WAF1/CIP1) prevented cell-cycle progression. Cdk1 induction was exploited in vivo to improve the sensitivity to CPT-11 by additional treatment with the cdk-I CYC-202. We demonstrate a gain of sensitivity to CPT-11 in a p53-mutated colon cancer model either by restoring wild-type p53 function or by sequential treatment with cdk-Is. Considering that mutations in p53 are among the most common genetic alterations in CRC, a therapeutic approach specifically targeting p53-deficient tumors could greatly improve the treatment outcomes.