Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Benoît Chassaing
Interaction microbiote-mucus à la surface de l’épithélium colique humain
Publication : Scientific reports

Dietary emulsifier consumption alters gene expression in the amygdala and paraventricular nucleus of the hypothalamus in mice.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Scientific reports - 01 Jun 2022

Arnold AR, Chassaing B, Pearce BD, Huhman KL

Link to Pubmed [PMID] – 35650224

Link to DOI – 10.1038/s41598-022-13021-7

Sci Rep 2022 Jun; 12(1): 9146

Dietary emulsifier consumption promotes systemic low-grade inflammation, metabolic deregulation, and possibly an anxiety-like phenotype. The latter finding suggests that dietary emulsifiers impact brain areas that modulate stress responses. The goal of the current study was to test whether emulsifier consumption is associated with changes in gene expression in the amygdala and the paraventricular nucleus of the hypothalamus (PVN), two brain areas that are involved in behavioral and neuroendocrine responses to stress. Using RNA-Seq, we compared groups consuming either carboxymethylcellulose or polysorbate 80 for 12-weeks. A total of 243 genes were differentially expressed in the amygdala and PVN of emulsifier-treated mice compared to controls. There was minimal overlap of differentially expressed genes in CMC- and P80-treated animals, suggesting that each emulsifier acts via distinct molecular mechanisms to produce an anxiety-like phenotype. Furthermore, gene ontology and pathway analysis revealed that various stress, metabolic, and immune terms and pathways were altered by emulsifiers. These findings are the first to demonstrate that emulsifier consumption changes gene expression in brain regions that are critical for stress responding, providing possible molecular mechanisms that may underly the previously observed anxiety-like phenotype.