Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Journal of immunology (Baltimore, Md. : 1950)

Delayed and separate costimulation in vitro supports the evidence of a transient “excited” state of CD8+ T cells during activation

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of immunology (Baltimore, Md. : 1950) - 01 May 2000

Pardigon N, Cambouris C, Bercovici N, Lemaître F, Liblau R, Kourilsky P

Link to Pubmed [PMID] – 10779749

J. Immunol. 2000 May;164(9):4493-9

Although the two-signal model for T cell activation states that a signal-1 through the TCR and a costimulatory signal-2 are required for optimal stimulation, it is now clear that the requirement for costimulation can be bypassed under certain conditions. We previously reported that this is the case for naive CD8+ T cells in vitro. In the present study we tested the effect of signal-2 when delivered after signal-1 has been disrupted. Naive CD8+ T cells from TCR transgenic mice were stimulated in vitro by using immobilized recombinant single-chain MHC molecules alone as signal-1. This signal was then stopped after different lengths of time, and anti-CD28 mAb as signal-2 was given either immediately or after a time lag. We found that signal-2 can potentiate a short signal-1 when added sequentially. Moreover, a time lag between the two signals does not abolish this potentiation. If the strength of signal-1, but not its duration, is increased, then the time lag between the delivery of signals 1 and 2 can be lengthen without loss of potentiation. Together, our results indicate that the two signals do not need to be delivered concomitantly to get optimal T cell activation. We suggest that the CD8+ T cells can reach a transient “excited” state after being stimulated with signal-1 alone, characterized by the cell’s ability to respond to separate and delayed signal-2.