Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Cédric Delevoye
Cellules infectÈes par Chlamydia trachomatis. Les bactÈries se dÈveloppent dans une vacuole (rouge), ‡ proximitÈ du noyau de la cellule-hÙte (bleu). Ce compartiment interagit de faÁon Ètroite avec ceux de la cellule hÙte. Marquage vert= localisation d'une protÈine de l'hÙte, Vamp8, exprimÈe par transfection. Les Chlamydia sont, selon les souches, responsables de maladies sexuellement transmises, de cÈcitÈs, d'infections pulmonaires et pourraient Ítre impliquÈes dans l'athÈrosclÈrose.
Publication : The Journal of biological chemistry

Conservation of the biochemical properties of IncA from Chlamydia trachomatis and Chlamydia caviae: oligomerization of IncA mediates interaction between facing membranes

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The Journal of biological chemistry - 16 Aug 2004

Delevoye C, Nilges M, Dautry-Varsat A, Subtil A

Link to Pubmed [PMID] – 15316015

J. Biol. Chem. 2004 Nov;279(45):46896-906

The developmental cycle of Chlamydiaceae occurs in a membrane compartment called an inclusion. IncA is a member of a family of proteins synthesized and secreted onto the inclusion membrane by bacteria. IncA proteins from different species of Chlamydiaceae show little sequence similarity. We report that the biochemical properties of Chlamydia trachomatis and Chlamydia caviae are conserved. Both proteins self-associate to form multimers. When artificially expressed by the host cell, they localize to the endoplasmic reticulum. Strikingly, heterologous expression of IncA in the endoplasmic reticulum completely inhibits concomitant inclusion development. Using truncated forms of IncA from C. caviae, we show that expression of the C-terminal cytoplasmic domain of the protein at the surface of the endoplasmic reticulum is sufficient to disrupt the bacterial developmental cycle. On the other hand, development of a C. trachomatis strain that does not express IncA is not inhibited by artificial IncA expression, showing that the disruptive effect observed with the wild-type strain requires direct interactions between IncA molecules at the inclusion and on the endoplasmic reticulum. Finally, we modeled IncA tetramers in parallel four helix bundles based on the structure of the SNARE complex, a conserved structure involved in membrane fusion in eukaryotic cells. Both C. trachomatis and C. caviae IncA tetramers were highly stable in this model. In conclusion, we show that the property of IncA proteins to assemble into multimeric structures is conserved between chlamydial species, and we propose that these proteins may have co-evolved with the SNARE machinery for a role in membrane fusion.