Link to Pubmed [PMID] – 23085716
Nat. Struct. Mol. Biol. 2012 Nov;19(11):1124-31
The exon junction complex (EJC) is a central effector of the fate of mRNAs, linking nuclear processing to mRNA transport, translation and surveillance. However, little is known about its transcriptome-wide targets. We used cross-linking and immunoprecipitation methods coupled to high-throughput sequencing (CLIP-seq) in human cells to identify the binding sites of the DEAD-box helicase eIF4AIII, an EJC core component. CLIP reads form peaks that are located mainly in spliced mRNAs. Most expressed exons harbor peaks either in the canonical EJC region, located ~24 nucleotides upstream of exonic junctions, or in other noncanonical regions. Notably, both of these types of peaks are preferentially associated with unstructured and purine-rich sequences containing the motif GAAGA, which is a potential binding site for EJC-associated factors. Therefore, EJC positions vary spatially and quantitatively between exons. This transcriptome-wide mapping of human eIF4AIII reveals unanticipated aspects of the EJC and broadens its potential impact on post-transcriptional regulation.