Link to Pubmed [PMID] – 30541885
Link to DOI – 10.1073/pnas.1811931115
Proc Natl Acad Sci U S A 2018 Dec; 115(52): 13365-13370
The chemoreceptor array, a remarkably ordered supramolecular complex, is composed of hexagonally packed trimers of receptor dimers networked by a histidine kinase and one or more coupling proteins. Even though the receptor packing is universal among chemotactic bacteria and archaea, the array architecture has been extensively studied only in selected model organisms. Here, we show that even in the complete absence of the kinase, the cluster II arrays in Vibrio cholerae retain their native spatial localization and the iconic hexagonal packing of the receptors with 12-nm spacing. Our results demonstrate that the chemotaxis array is versatile in composition, a property that allows auxiliary chemotaxis proteins such as ParP and CheV to integrate directly into the assembly. Along with its compositional variability, cluster II arrays exhibit a low degree of structural stability compared with the ultrastable arrays in Escherichia coli We propose that the variability in chemoreceptor arrays is an important mechanism that enables the incorporation of chemotaxis proteins based on their availability.