Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : The European journal of neuroscience

Age-related differences in bottom-up and top-down attention: Insights from EEG and MEG.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The European journal of neuroscience - 01 Mar 2022

ElShafei HA, Masson R, Fakche C, Fornoni L, Moulin A, Caclin A, Bidet-Caulet A,

Link to Pubmed [PMID] – 35112420

Link to DOI – 10.1111/ejn.15617

Eur J Neurosci 2022 Mar; 55(5): 1215-1231

Attention operates through top-down and bottom-up processes, and a balance between these processes is crucial for daily tasks. Imperilling such balance could explain ageing-associated attentional problems such as exacerbated distractibility. In this study, we aimed to characterize this enhanced distractibility by investigating the impact of ageing upon event-related components associated with top-down and bottom-up attentional processes. MEG and EEG data were acquired from 14 older and 14 younger healthy adults while performing a task that conjointly evaluates top-down and bottom-up attention. Event-related components were analysed on sensor and source levels. In comparison with the younger group, the older mainly displayed (1) reduced target anticipation processes (reduced CMV), (2) increased early target processing (larger P50 but smaller N1) and (3) increased processing of early distracting sounds (larger N1 but reduced P3a), followed by a (4) prolonged reorientation towards the main task (larger RON). Taken together, our results suggest that the enhanced distractibility in ageing could stem from top-down deficits, in particular from reduced inhibitory and reorientation processes.