Link to Pubmed [PMID] – 10775546
Brain 2000 May;123 ( Pt 5):1017-26
Disynaptic Ia reciprocal inhibition acts, at the spinal level, by actively inhibiting antagonist motor neurons and reducing the inhibition of agonist motor neurons. The deactivation of this pathway in Parkinson’s disease is still debated. Disynaptic reciprocal inhibition of H reflexes in the forearm flexor muscles was examined in 15 control subjects and 16 treated parkinsonian patients at rest and at the onset of a voluntary wrist flexion. Two patients were reassessed 18 h after withdrawal of antiparkinsonian medication. At rest, the level of Ia reciprocal inhibition between the wrist antagonist muscles was not significantly different between patients and controls. In contrast, clear abnormalities of this inhibition were revealed by voluntary movements in the patients. In normal subjects, at the onset of a wrist flexion, Ia reciprocal inhibition showed a large decrease, and we argue that this decrease is supraspinal in origin. On the less affected sides of the patients the descending modulation was still present but lower than in controls; on the more affected sides this modulation had vanished almost completely. These movement-induced abnormalities of disynaptic Ia reciprocal inhibition were closely associated with Parkinson’s disease but were probably not dependent on L-dopa. They could play a role in the disturbances of precise voluntary movements observed in Parkinson’s disease.