Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Journal of cell science

An interpretable and versatile machine learning approach for oocyte phenotyping.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of cell science - 01 Jul 2022

Letort G, Eichmuller A, Da Silva C, Nikalayevich E, Crozet F, Salle J, Minc N, Labrune E, Wolf JP, Terret ME, Verlhac MH

Link to Pubmed [PMID] – 35660922

Link to DOI – 10.1242/jcs.260281

J Cell Sci 2022 Jul; 135(13):

Meiotic maturation is a crucial step of oocyte formation, allowing its potential fertilization and embryo development. Elucidating this process is important for both fundamental research and assisted reproductive technology. However, few computational tools based on non-invasive measurements are available to characterize oocyte meiotic maturation. Here, we develop a computational framework to phenotype oocytes based on images acquired in transmitted light. We trained neural networks to segment the contour of oocytes and their zona pellucida using oocytes from diverse species. We defined a comprehensive set of morphological features to describe an oocyte. These steps were implemented in an open-source Fiji plugin. We present a feature-based machine learning pipeline to recognize oocyte populations and determine morphological differences between them. We first demonstrate its potential to screen oocytes from different strains and automatically identify their morphological characteristics. Its second application is to predict and characterize the maturation potential of oocytes. We identify the texture of the zona pellucida and cytoplasmic particle size as features to assess mouse oocyte maturation potential and tested whether these features were applicable to the developmental potential of human oocytes. This article has an associated First Person interview with the first author of the paper.