Link to Pubmed [PMID] – 27907250
Link to DOI – 10.1002/art.39993
Arthritis Rheumatol 2017 04; 69(4): 750-762
The molecular mechanisms steering abnormal B cell responses in autoimmune diseases remain poorly understood. We undertook this study to identify molecular switches controlling pathologic B cell responses in rheumatoid arthritis (RA).Candidate molecules were identified by gene expression profiling of RA synovitis and validated by quantitative polymerase chain reaction and immunohistochemistry. B cell-specific expression was confirmed by immunofluorescence, immunoblotting, and flow cytometry. The role of Bob1 in pathologic B cell responses was assessed in collagen-induced arthritis (CIA).Transcriptional profiling of RA synovitis revealed a prominent B cell signature, with the transcriptional coactivator Bob1 and its putative target BCMA being among the most up-regulated genes. Further analysis confirmed the microarray data and demonstrated elevated levels of Bob1 in B cells in RA synovium. A functional study showed that Bob1-deficient mice failed to produce pathogenic anti-type II collagen (anti-CII) antibodies and were resistant to CIA. Adoptive transfer of cells from Bob1-deficient and Bob1-sufficient mice to recombination-activating gene 1-null mice demonstrated that Bob1 deficiency exclusively in B cells abrogated germinal center (GC) B cell formation, anti-CII antibody production, and CIA development. Consistent with data from animal studies, immunophenotyping of human B cell subsets revealed increased expression of Bob1, predominantly in centrocytes and centroblasts. Correspondingly, Bob1 expression in RA synovitis was strongly correlated with CD21L, a molecular marker of GCs. In addition, similar Bob1 overexpression and correlation with CD21L expression was evidenced in parotid salivary gland tissue from patients with primary Sjögren’s syndrome.These expression and functional data identify the transcriptional coactivator Bob1 as a candidate molecular switch of pathogenic B cell responses in autoimmune diseases in humans.