Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : ACS applied materials & interfaces

Red-Emissive Guanylated Polyene-Functionalized Carbon Dots Arm Oral Epithelia against Invasive Fungal Infections.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in ACS applied materials & interfaces - 18 Dec 2019

Li X, Huang R, Tang FK, Li WC, Wong SSW, Leung KC, Jin L,

Link to Pubmed [PMID] – 31742377

Link to DOI – 10.1021/acsami.9b18003

ACS Appl Mater Interfaces 2019 Dec; 11(50): 46591-46603

Oral candidiasis as a highly prevalent and recurrent infection in medically compromised individuals is mainly caused by the opportunistic fungal pathogen Candida albicans. This epithelial infection, if not controlled effectively, can progress to life-threatening systemic conditions and complications. The efficacy of current frontline antifungals is limited due to their poor bioavailability and systemic toxicity. As such, an efficient intervention is essential for controlling disease progression and recurrence. Herein, a theranostic nanoplatform (CD-Gu+-AmB) was developed to track the penetration of antifungals and perturb the invasion of C. albicans at oral epithelial tissues, via decorating the homemade red-emissive carbon dots (CD) with positively charged guanidine groups (Gu+) followed by conjugation with antifungal polyene (amphotericin B, AmB) in a reacting site-controllable manner. The generated CD-Gu+-AmB favorably gathered within the Candida cells and exhibited potent antifungal effects in both planktonic and biofilm forms. It selectively accumulated in the nuclei of human oral keratinocytes and exhibited undetectable toxicity to the host cells. Moreover, we reported for the first time the penetration and exfoliation profiles of CD in a three-dimensional organotypic model of human oral epithelial tissues, demonstrating that the extra- and intracellular accumulation of CD-Gu+-AmB effectively resisted the invasion of C. albicans by forming a “shielding” layer throughout the entire tissue. This study establishes a multifunctional CD-based theranostic nanoplatform functioning as a traceable and topically applied antifungal to arm oral epithelia, thereby shedding light on early intervention of mucosal candidiasis for oral and general health.