Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : The Journal of antimicrobial chemotherapy

Mechanism of action of spiramycin and other macrolides

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The Journal of antimicrobial chemotherapy - 01 Jul 1988

Brisson-Noël A, Trieu-Cuot P, Courvalin P

Link to Pubmed [PMID] – 3053566

J. Antimicrob. Chemother. 1988 Jul;22 Suppl B:13-23

Macrolide antibiotics constitute a group of 12 to 16-membered lactone rings substituted with one or more sugar residues, some of which may be amino sugars. They inhibit bacterial protein synthesis both in vivo and in vitro with varying potencies. Macrolides are generally bacteriostatic, although some of these drugs may be bactericidal at very high concentrations. The mechanism of action of macrolides has been a matter of controversy for some time. Spiramycin, a 16-membered macrolide, inhibits translocation by binding to bacterial 50S ribosomal subunits with an apparent 1:1 stoichiometry. This antibiotic is a potent inhibitor of the binding to the ribosome of both donor and acceptor substrates. Spiramycin induces rapid breakdown of polyribosomes, an effect which has formerly been interpreted as occurring by normal ribosomal run-off followed by an antibiotic-induced block at or shortly after initiation of a new peptide. However, there is now convincing evidence that spiramycin, and probably all macrolides, act primarily by stimulating the dissociation of peptidyl-tRNA from ribosomes during translocation. Although the ribosomes of both Gram-positive and Gram-negative organisms are susceptible to macrolides, these antibiotics are mainly used against Gram-positive bacteria since they are unable to enter the porins of Gram-negative bacteria. Resistance to macrolides in clinical isolates is most frequently due to post-transcriptional methylation of an adenine residue of 23S ribosomal RNA, which leads to co-resistance to macrolides, lincosamides and streptogramins type B (the so-called MLSB phenotype). Other mechanisms of resistance involving cell impermeability or drug inactivation have been detected in Staphylococcus spp. and Escherichia coli. These strains are resistant to 14-membered macrolides (erythromycin and oleandomycin) but remain susceptible to spiramycin.