Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Annals of the New York Academy of Sciences

Functional genomics in early autoimmunity

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Annals of the New York Academy of Sciences - 01 Jun 2005

Melanitou E

Link to Pubmed [PMID] – 16014521

Ann. N. Y. Acad. Sci. 2005 Jun;1050:64-72

The molecular mechanisms initiating the autoimmune process in type 1 diabetes mellitus (T1DM) remain unknown, and studies aiming to address this question have been compromised by the difficulty of predicting the disease at an early age both in humans and in animal models. An additional hindrance in selecting individuals at an early age has been the complex genetic inheritance of autoimmune diabetes, implicating not only several genes but also environmental factors. We have previously demonstrated the predictive value of insulin autoantibodies (IAAs) at an early age, between three to five weeks in the NOD mouse. Animals positive for early appearance of IAAs (E-IAAs) develop autoimmune diabetes earlier. We showed a correlation between the presence of IAAs in the mothers during pregnancy, E-IAAs in the litters, and the early appearance of T1DM. NOD mice, E-IAA-positive, within litters from IAA-positive mothers during pregnancy, develop diabetes earlier and at a much greater rate than animals that are IAA-negative and from IAA-negative mothers. The molecular mechanisms responsible for this early autoimmune subphenotype were addressed by a global approach to differential gene expression analysis in the pancreatic lymph nodes (PaLNs). Although the data analysis is currently in progress, gene expression signatures were observed that are characteristic for PaLNs with regard to the presence or absence of IAAs. Overall, these data are consistent with the hypothesis of an early environmental influence from the autoimmune maternal environment on the genetic predisposition of the offspring, characterized by specific gene signatures leading to autoimmune disease.