Link to Pubmed [PMID] – 14764087
Eur. J. Biochem. 2004 Feb;271(4):713-23
Pronase (type XXV serine protease from Streptomyces griseus) efficiently depolymerizes chitosan, a linear beta–>1,4-linked polysaccharide of 2-amino-deoxyglucose and 2-amino-2-N-acetylamino-D-glucose, to low-molecular weight chitosans (LMWC), chito-oligomers (degree of polymerization, 2-6) and monomer. The maximum depolymerization occurred at pH 3.5 and 37 degrees C, and the reaction obeyed Michaelis-Menten kinetics with a Km of 5.21 mg.mL(-1) and Vmax of 138.55 nmoles.min(-1).mg(-1). The molecular mass of the major product, LMWC, varied between 9.0 +/- 0.5 kDa depending on the reaction time. Scanning electron microscopy of LMWC showed an approximately eightfold decrease in particle size and characterization by infrared spectroscopy, circular dichroism, X-ray diffractometry and 13C-NMR revealed them to possess a lower degree of acetylation, hydration and crystallinity compared to chitosan. Chitosanolysis by pronase is an alternative and inexpensive method to produce a variety of chitosan degradation products that have wide and varied biofunctionalities.