Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Molecular therapy : the journal of the American Society of Gene Therapy

Correction of laminin-5 deficiency in human epidermal stem cells by transcriptionally targeted lentiviral vectors.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Molecular therapy : the journal of the American Society of Gene Therapy - 01 Dec 2008

Di Nunzio F, Maruggi G, Ferrari S, Di Iorio E, Poletti V, Garcia M, Del Rio M, De Luca M, Larcher F, Pellegrini G, Mavilio F,

Link to Pubmed [PMID] – 18813277

Link to DOI – 10.1038/mt.2008.204

Mol Ther 2008 Dec; 16(12): 1977-85

Deficiency of the basement membrane component laminin-5 (LAM5) causes junctional epidermolysis bullosa (JEB), a severe and often fatal skin adhesion defect. Autologous transplantation of epidermal stem cells genetically corrected with a Moloney leukemia virus (MLV)-derived retroviral vector reconstitutes LAM5 synthesis, and corrects the adhesion defect in JEB patients. However, MLV-derived vectors have genotoxic characteristics, and are unable to reproduce the physiological, basal layer-restricted expression of LAM5 chains. We have developed an alternative gene transfer strategy based on self-inactivating (SIN) or long terminal repeat (LTR)-modified lentiviral vectors, in which transgene expression is under the control of different combinations of promoter-enhancer elements derived from the keratin-14 (K14) gene. Analysis in human keratinocyte cultures and in fully differentiated skin regenerated onto immunodeficient mice showed that gene expression directed by K14 enhancers is tissue-specific and restricted to the basal layer of the epidermis. Transcriptionally targeted lentiviral vectors efficiently transduced clonogenic stem/progenitor cells derived from a skin biopsy of a JEB patient, restored normal synthesis of LAM5 in cultured keratinocytes, and reconstituted normal adhesion properties in human skin equivalents transplanted onto immunodeficient mice. These vectors are therefore an effective, and potentially more safe, alternative to MLV-based retroviral vectors in gene therapy of JEB.Molecular Therapy (2008) 16 12, 1977-1985 doi:10.1038/mt.2008.204.