Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Gene therapy

APOBEC3A catabolism of electroporated plasmid DNA in mouse muscle

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Gene therapy - 09 Oct 2014

Kostrzak A, Henry M, Demoyen PL, Wain-Hobson S, Vartanian JP

Link to Pubmed [PMID] – 25298040

Gene Ther. 2015 Jan;22(1):96-103

The mouse is widely used as a model for DNA therapy and vaccination even though the efficiency of DNA delivery in higher mammals and humans is much less. The human APOBEC3 (A3) enzymes impact viral genomes by cytidine deamination, which introduces multiple uridine residues into single-stranded DNA, a process known as genetic editing. This initiates rapid DNA catabolism via a uracil DNA glycosylase dependent pathway. In tissue culture, A3A, A3C and A3B can hyperedit transfected plasmid DNA. We explored plasmid catabolism in vivo initiated by A3A, the most efficient of the human enzymes and one that is functionally conserved across most mammals. As rodents do not encode an A3A enzyme, it was possible to explore DNA degradation in the mouse model. Human A3A genetically edits co-electroporated luciferase plasmid DNA in mouse skeletal muscle that initiates DNA degradation resulting in approximately fourfold decrease in bioluminescence. Part of the degradation occurs in the nucleus as indicated by complex hyperedited DNA molecules. As human A3A is strongly upregulated by interferon α and DNA sensing pathways, it is a strong candidate enzyme for restricting plasmid DNA in higher mammals.