Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Journal of the American Chemical Society

Effect of internal cavities on folding rates and routes revealed by real-time pressure-jump NMR spectroscopy

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of the American Chemical Society - 18 Sep 2013

Roche J, Dellarole M, Caro JA, Norberto DR, Garcia AE, Garcia-Moreno B, Roumestand C, Royer CA

Link to Pubmed [PMID] – 23987660

J. Am. Chem. Soc. 2013 Oct;135(39):14610-8

The time required to fold proteins usually increases significantly under conditions of high pressure. Taking advantage of this general property of proteins, we combined P-jump experiments with NMR spectroscopy to examine in detail the folding reaction of staphylococcal nuclease (SNase) and of some of its cavity-containing variants. The nearly 100 observables that could be measured simultaneously collectively describe the kinetics of folding as a function of pressure and denaturant concentration with exquisite site-specific resolution. SNase variants with cavities in the central core of the protein exhibit a highly heterogeneous transition-state ensemble (TSE) with a smaller solvent-excluded void volume than the TSE of the parent SNase. This heterogeneous TSE experiences Hammond behavior, becoming more native-like (higher molar volume) with increasing denaturant concentration. In contrast, the TSE of the L125A variant, which has a cavity at the secondary core, is only slightly different from that of the parent SNase. Because pressure acts mainly to eliminate solvent-excluded voids, which are heterogeneously distributed throughout structures, it perturbs the protein more selectively than chemical denaturants, thereby facilitating the characterization of intermediates and the consequences of packing on folding mechanisms. Besides demonstrating how internal cavities can affect the routes and rates of folding of a protein, this study illustrates how the combination of P-jump and NMR spectroscopy can yield detailed mechanistic insight into protein folding reactions with exquisite site-specific temporal information.