Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Seminars in immunology

Homeostasis of T cell numbers: from thymus production to peripheral compartmentalization and the indexation of regulatory T cells

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Seminars in immunology - 01 Jun 2005

Almeida AR, Rocha B, Freitas AA, Tanchot C

Link to Pubmed [PMID] – 15826829

Semin. Immunol. 2005 Jun;17(3):239-49

A system under homeostatic control tends to maintain its structure and functions by establishing dynamic equilibriums controlled by multiple regulatory mechanisms. We have shown that this is the case for immune system. Several different mechanisms seem to participate in the homeostatic control of T cell numbers and population distribution. In other words, besides a quantitative dimension, there is also a qualitative dimension in T cell homeostasis. This is achieved through competition by driving the specialization of sub-populations of lymphocytes to occupy specific niches in the peripheral pool and by developing independent homeostatic mechanisms for each particular cell sub-set. Thus, the sizes of the naïve and memory T cell compartments are governed by independent homeostatic mechanisms, which preserve the capacity to deal with any novel infection (conferred by the presence of naïve T cells) whilst ensuring the efficacy of memory responses when dealing with recurring antigens. Peripheral T cell homeostasis also depends on the integrity of sub-population structure and the presence of regulatory CD4+ CD25+ T cells. The indexation of regulatory CD4+ CD25+ T cell numbers to the numbers of peripheral activated CD4+ T cells is another mechanism of homeostasis that has major advantages in the control of immune responses. It ensures continuous regulation of T cell numbers throughout immune responses, allowing for increases in cell numbers as long as the proportion of CD4+ CD25+ regulatory T cells is kept.