Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : PLoS biology

Sound feature representations decorrelate across the mouse auditory pathway.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in PLoS biology - 01 Oct 2025

Gosselin E, Bagur S, Jamali S, Puel JL, Bourien J, Bathellier B

Link to Pubmed [PMID] – 41134854

Link to DOI – 10.1371/journal.pbio.3003452

PLoS Biol 2025 Oct; 23(10): e3003452

Early studies on orientation selectivity in the visual cortex have suggested that sensory systems generate new feature representations at specific processing stages. Many observations challenge this view, but in the absence of systematic, multistage measurements, the logic of how feature tuning emerges remains elusive. Here, using a generic approach based on representational similarity analysis with a noise-corrected population metric, we demonstrate in the mouse auditory system that feature representations evolve gradually with, in some cases, major, feature-specific improvements at particular stages. We observe that single frequency tuning is already fully developed in the cochlear nucleus, the first stage of processing, while tuning to higher-order features improves up to the auditory cortex, with major steps in the inferior colliculus for amplitude modulation frequency or noise bandwidth tuning and in the cortex for frequency modulation direction and for complex sound identity or direction. Moreover, we observe that intensity tuning is established in a feature-dependent manner, earlier for pure frequencies than for more complex sounds. This indicates that auditory feature computations are a mix of stepwise and gradual processes which together contribute to decorrelate sound representations.