Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Lost your password?
Go back
Scroll to top
Share
© Research
Publication : PLoS computational biology

How does date-rounding affect phylodynamic inference for public health?

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in PLoS computational biology - 01 Apr 2025

Featherstone LA, Ingle DJ, Wirth W, Duchene S

Link to Pubmed [PMID] – 40215457

Link to DOI – 10.1371/journal.pcbi.1012900

PLoS Comput Biol 2025 Apr; 21(4): e1012900

Phylodynamic analyses infer epidemiological parameters from pathogen genome sequences for enhanced genomic surveillance in public health. Pathogen genome sequences and their associated sampling dates are the essential data in every analysis. However, sampling dates are usually associated with hospitalisation or testing and can sometimes be used to identify individual patients, posing a threat to patient confidentiality. To lower this risk, sampling dates are often given with reduced date-resolution to the month or year, which can potentially bias inference. Here, we introduce a practical guideline on when date-rounding biases the inference of epidemiologically important parameters across a diverse range of empirical and simulated datasets. We show that the direction of bias varies for different parameters, datasets, and tree priors, while compounding with lower date-resolution and higher substitution rates. We also find that bias decreases for datasets with longer sampling intervals, implying that our guideline is most applicable to emerging datasets. We conclude by discussing future solutions that prioritise patient confidentiality and propose a method for safer sharing of sampling dates that translates them them uniformly by a random number.