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Abstract: The Gromov-Wasserstein (GW) formalism can be seen as a generalization of the optimal
transport (OT) formalism for comparing two distributions associated with different metric spaces.
It is a quadratic optimization problem and solving it usually has computational costs that can rise
sharply if the problem size exceeds a few hundred points. Recently fast techniques based on entropy
regularization have being developed to solve an approximation of the GW problem quickly. There
are issues, however, with the numerical convergence of those regularized approximations to the
true GW solution. To circumvent those issues, we introduce a novel strategy to solve the discrete
GW problem using methods taken from statistical physics. We build a temperature-dependent free
energy function that reflects the GW problem’s constraints. To account for possible differences of
scales between the two metric spaces, we introduce a scaling factor s in the definition of the energy.
From the extremum of the free energy, we derive a mapping between the two probability measures
that are being compared, as well as a distance between those measures. This distance is equal to
the GW distance when the temperature goes to zero. The optimal scaling factor itself is obtained
by minimizing the free energy with respect to s. We illustrate our approach on the problem of
comparing shapes defined by unstructured triangulations of their surfaces. We use several synthetic
and “real life” datasets. We demonstrate the accuracy and automaticity of our approach in non-rigid
registration of shapes. We provide numerical evidence that there is a strong correlation between
the GW distances computed from low-resolution, surface-based representations of proteins and the
analogous distances computed from atomistic models of the same proteins.

Keywords: optimal transport; Gromov-Wasserstein; statistical physics

1. Introduction

In 1776, Gaspard Monge presented an intriguing problem to the French Academy
of Science [1]. Consider two domains D1 and D2 in the plane. D1 (referred to as “déblai”
by Monge) contains an excess of earth that needs to be transported to D2 (“remblai” in
Monge’s terminology). Assuming that the earth at a point (x, y) in D1 is transported to a
position F(x, y) in D2, and that the masses associated with the point and image are equal,
proportional to dxdy, the total “cost” C of the transportation is given by

C =
∫ ∫

D1

||(x, y)− F(x, y)||dxdy, (1)

where ||.|| stands for the distance in the plane. Finding the minimum cost for moving
the earth is then akin to finding this transport function F. Monge acknowledged in his
presentation that he had not solved this problem on a practical level. This “allocation
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of ressources” problem became well known, however, reappearing in many disciplines
and consequently has been the object of many studies. Erwin Schrödinger, for example,
expressed it as the problem of finding how to evolve a probability distribution into another
(see [2] for a review), the Schrödinger bridge problem. Kantorovich relaxed the Monge
problem by allowing masses to split [3]. He also formulated a method, linear programming,
for solving his relaxed version. All these problems are now referred to as the optimal
transport problems, or OT. The OT problem is particularly intriguing since its solutions
involve two crucial elements. It first specifies a distance between the measured spaces taken
into account. This distance is known as the Monge-Kantorovich distance, the Wasserstein
distance, or the earth mover’s distance, according to the field of applications. It also derives
the optimal transport plan between the measured spaces, thereby defining a registration
between the spaces. Consequently, applications of OT have exploded in the recent years
(for in-depth reviews of OT and its uses, see [4,5]).

The Monge-Kantorovich OT problem can be formulated as follows. Let A and B be
two subsets of a space M with a metric d, and let α and β be probability measures on A
and B, respectively. Let C be a cost function C : A× B → R+. The objective is to find a
coupling G on A× B that minimizes a transportation cost U defined as

U(G) =
∫

A

∫
B

C(a, b)G(a, b)d(a, b). (2)

The minimum of U(G) is to be identified over the couplings G that satisfy the following
constraints on their restrictions to the subsets A and B:

∀a,
∫

B
G(a, b)db = α(a) (3a)

∀b,
∫

A
G(a, b)da = β(b). (3b)

It was shown that this minimum exists and that it defines a distance between the two
probability measures α and β that satisfies all metric properties [6].

One key condition for solving the optimal transport problem between two sets A and B
is that those sets belong to the same metric space. This allows for the definition of a distance
between any point of A and any point of B, and therefore of a cost function between the
two sets. In practice, however, the two sets may not be in the same metric space, or, even if
they do, the corresponding metric may not be practical. Consider for example two sets of
points in R3; while it is possible to compute the euclidean distance between any pairs of
points belonging to the two sets, inter distances between the two sets depend on the relative
position of the two sets, namely a rigid body transformation involving six real-valued
parameters (three that define a rotation, three that define a translation). Distances within
each set are independent of such transformation; such distances, however, define a different
metric space, one for each set of points. Several methods have been developed to use this
information within the framework of optimal transport [7–9]. Here we are concerned with
the Gromov-Wasserstein formalism [8], which has become popular for shape matching [8],
for word embedding [10], as well as in the machine learning community, solving learning
tasks such as heterogenous domain adaptation [11], deep metric alignment [12], computing
distances between graphs [13] and graph classification [14,15], clustering [16] or generative
modeling [17], among others. The GW problem can be stated as follows. Let (A, dA)
and (B, dB) be two metric spaces, and let α and β be probability measures on A and B,
respectively. The goal is to find a coupling G on A× B that minimizes the transport cost T
defined as

Tp(G) =

(∫
A×A

∫
B×B

G(a, b)
∣∣dA(a, a′)− dB(b, b′)

∣∣pG(a′, b′)dada′dbdb′
) 1

p
, (4)
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with p ≥ 1 (the most common value for p is 2, as it will be discussed below). The minimum
of Tp(G) is to be found over couplings that satisfy the constraints defined in Equation (3).
As for the standard Monge-Kantorovich OT presented above, it was proved that a minimum
to the transport cost defined in Equation (4) always exists [8]; we write this minimum as
GWp(α, β). Finding this minimum, however, is a quadratic optimization problem, as
opposed to finding the coupling that minimizes the transport cost associated with the OT
problem (Equation (2)), which is a linear optimization problem. This minimum of the
transportation cost defines a distance over the space of metric measured spaces (i.e., the
triplet (A, dA, α)) modulo the measure-preserving isometries [8]. When the metrics dA and
dB are the Euclidean distance over real numbers, i.e., when A = Rm and B = Rn (with n not
necessarily equal to m), and dA = ||.||Rm and dB = ||.||Rn (where ||.||means the Euclidean
norm), and when p = 2, an interesting property of GW2(α, β) is that it is invariant with
respect to rigid body transformations (i.e., isometries). This is of significance for example if
the GW framework is to be used to compare shapes in space, when this comparison has to
be independent of the relative positions of the shapes..

As mentioned above, classical OT is a linear programming problem. It is intriguing,
however, that the current successes of OT are not due to recent advances in solving LP
problems. They were instead prompted by the idea of entropic regularization, namely
minimizing a modified version of the transport cost defined in Equation (2) :

Uε(G) = U(G)− εH(G), (5)

where ε is the parameter that controls the amount of regularization and H(G) is an entropy
on the coupling G. It is there to impose the positivity of its elements [18]. As ε → 0 the
regularized problem tends to the traditional problem. Interestingly, the minimum of the
regularized transport cost Uε(Gopt) is a distance that satisfies all metric properties for all
values of ε. This distance is called the Sinkhorn distance [18]. The main advantage of
the entropic regularization is that it leads to a strictly convex problem that has a unique
solution [18]. In addition, this solution can be found effectively using the Sinkhorn’s
algorithm [19–21]. Sinkhorn’s algorithms have running times of order O(N2), while solving
directly the OT problem as a linear program problem has a running time complexity of
O(N3).

The same entropic regularization can be used the solve the GW problem, originally a
quadratic optimization problem which is NP-hard in its general formulation. The idea is
the same as for OT, namely add a regularized term to Equation (4) (see [22]):

Tp,ε(G) =
(
Tp(G)

)p − εH(G). (6)

Note that here it is not Tp(G) that is considered, but its p-th power. While this
simplifies the optimization process, it sets Tp,ε(G) to be a “discrepancy” (in the language of
Peyré et al. [22]) and not a distance with metric properties. The addition of the entropic
regularization led, however, to an iterative algorithm for finding the GW discrepancy, with
each iteration amounting to solve a regularized OT problem [22].

While the regularization based on entropy significantly expanded the appeal of OT,
there are issues with the numerical convergence of the regularized solution to the actual OT
solution. Furthermore, the physical significance of this regularization is unclear, despite its
reference to entropy. Using methods from statistical physics, we have recently designed a
novel framework for solving the OT problem that alleviate those issues [23,24]. The main
idea is to build a strongly concave temperature dependent effective free energy function
that encapsulates the constraints of the OT problem. The maximum of this function is
proved to define a metric distance in the space of measured sets of points of fixed cardinality
for all temperatures. In addition, this distance is proved to decrease monotonically to the
regular OT distance at zero temperature. This property enables a robust algorithm for
finding the OT distance using temperature annealing. This approach has been adapted
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to solving the assignment, or Monge problem [25], as well as to the unbalanced optimal
transport problem [26]. In this paper we adapt it to solving the GW problem.

The paper is structured as follows. In the next section, we introduce the GW problem
and its regularized version for discrete metric measured spaces. The following section
covers the specifics of the statistical physics method we propose. All proofs of important
properties of this method are given in the appendices. The subsequent section is devoted
to the algorithm that implements our method in a C++ program, FreeGW. Next, we present
numerical applications to the problem of comparing and registering 3D shapes, using
examples based on synthetic data as well as on real data. The conclusion highlights
possible future developments.

2. The Discrete Gromov-Wasserstein Problem

This section briefly describes the discrete Gromov Wasserstein transport problem and
its regularized version. More thorough descriptions can be found in Refs. [7,8,22].

The discrete version of the GW problem is an optimal transport problem between
two discrete probability measures whose supports are metric spaces (M1, d1) and (M2, d2)
with possibly different metrics. Let S1 and S2 be subsets of M1 and M2 with cardinality N1
and N2, respectively. Each point k in S1 (resp S2) is characterized by a “mass” m1(k) (resp
m2(k)). We assume balance, namely that ∑

k
m1(k) = ∑

l
m2(l). In the following, these sums

are set to 1, but the formalism could easily be adapted to handle a different values.
The discrete GW problem is defined as finding a coupling or transport plan G that

minimizes the total transport cost U defined as

Up(G) = ∑
k,l

∑
k′ ,l′

G(k, l)
∣∣d1(k, k′)− d2(l, l′)

∣∣pG(k′, l′), (7)

where p is a fixed integer greater or equal to 1, and the summations extend over all
(k, k′) ∈ S2

1 and (l, l′) ∈ S2
2. Note that G is a matrix of correspondence between points k

in S1 and points l in S2. The minimization is to be performed over those matrices G that
satisfy the following constraints

∀(k, l), G(k, l) ≥ 0, (8a)

∀k, ∑
l

G(k, l) = m1(k), (8b)

∀l, ∑
k

G(k, l) = m2(l). (8c)

The set of all matrices G for which those conditions (8) are satisfied defines a polytope,
which we refer to as G(S1, S2).

The minimization of the cost Up(G) yields an optimal transport plan Gopt. We refer
to the minimum of the cost as dp(S1, S2). Note that dp(S1, S2) is not a distance. Its p-root,

however, which we write as GWp(S1, S2) =
(
Up(Gopt)

) 1
p is a metric distance between

(S1, d1) and (S2, d2) quotiented by measure-preserving isometries [8].
Solving for the transport plan that minimizes Equation (7) under the constraints de-

fined in Equation (8) is a non-convex quadratic optimization problem [27,28] and therefore
NP-hard in the general case (see for example [29]). To circumvent this large computing cost
when N is large, following Cuturi’s idea proposed for the optimal transport problem [18],
Peyré et al. proposed a regularized version of Equation (7) [22]:

Up,ε(G) = ∑
k,l

∑
k′ ,l′

G(k, l)
∣∣d1(k, k′)− d2(l, l′)

∣∣pG(k′, l′) + ε ∑
k,l

G(k, l) log(G(k, l)), (9)

where ε is a parameter that controls the level of regularization. This parameter scales an
entropic term, with the entropy set to −x ln(x), the standard information theory entropy,
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which imposes the positivity of the G(k, l) terms [18]. This regularized GW problem can
then be solved iteratively using a regularized linear optimal transport solver, as described
in Algorithm 1.

Algorithm 1 is akin to a sequential quadratic programming method [30]. Briefly, given
two sets of weighted points and the intra-set distances between those points, a “cost matrix”
between the two sets is defined from the current transport plan G (initialized according
to the masses of the points). This cost matrix is then used to solve a regularized linear
optimal transport problem. The corresponding optimal transport plan is then used to
update the cost matrix, and the procedure is then iterated until the transport plan does
not change anymore (within a tolerance), i.e., when the transport plan and the cost matrix
are consistent. There are many options to solve the regularized linear optimal transport
problem in step 2, such as the Sinkhorn algorithm [20,21] initially proposed for solving the
OT problem by Cuturi [18], or stabilized version of this algorithm [31–35], or using our
own method based on statistical physics [23,24].

Algorithm 1 An iterative solver for the regularized GW problem.
Input: N1 and N2, the size of the two sets of points S1 and S2. The mass vectors m1(k) and m2(l), for k ∈ [1, N1]
and l ∈ [1, N2]. The distance matrices d1(k, k′) and d2(l, l′) over all points (k, k′) ∈ S2

1 and (l, l′) ∈ S2
2. Tolerance,

TOL; regularization parameter, ε; N, maximum number of iterations.
Initialize: Initialize transport plan G0(k, l) = m1(k)m2(l)
for n = 1, . . . , N do

(1) Define “cost matrix” Cn(k, l) =
N1
∑

k′=1

N2
∑

l′=1
|d1(k, k′)− d2(l, l′)|pGn−1(k′, l′).

(2) Solve Gn = argmin
G

U(G) = argmin
G

(
∑
k,l

Cn(k, l)G(k, l) + ε ∑
k,l

G(k, l) log(G(k, l))

)
under the constraints

defined in Equation (8).
(3) If ||Gn − Gn−1|| < TOL, break.

end for
Output: The optimal transport plan, Gn.

Algorithm 1 can be seen as applying successive linear approximation to the quadratic
GW problem and as such it is expected to be efficient in computing time. There remains
difficulties, however, as:

(i) Solving the regularized OT problem in step 2 is difficult when ε → 0 (a necessary
condition to get to the real GW distance).

(ii) Algorithm 1 is basically a fixed point method for which there is no guarantee of
convergence. This is discussed in detail in Ref. [22].

(iii) There is no easy option within Algorithm 1 to compute a scaling factor between
distances within S1 and distances within S2. Those distances may have different scales,
however, which can significantly impact the numerical stability of the algorithm.

In the following section, we describe a different method for solving the GW problem
that attempt to solve at least some of these concerns.

3. A Statistical Physics Approach to Solving the Gromov-Wasserstein Problem

Solving the GW problem amounts to finding the minimum of a function defined by
Equation (7) over the space of possible couplings between the two discrete sets of points
considered. If this function is reworded as an “energy”, statistical physics allows for a
different perspective on how to solve this problem. Indeed, in statistical physics, finding
the minimum of an energy function is equivalent to finding the most probable state of the
system it characterizes. Here, this system corresponds to the different couplings between
between the measured sets of points S1 and S2. We refer to the space of such couplings
G(S1, S2) (see above). Couplings G in this space satisfy multiple constraints. Their row
sums and row columns correspond to the masses associated with S1 and S2, respectively
(see Equation (8)). In addition, their elements are positive, and in fact smaller than one, if
we assume that the sums of the masses on S1 and on S2 are both equal to 1 (the fact that
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these sums are equal is referred to as the balance condition and setting them to 1 is arbitrary
but useful, as illustrated below).

A state in this system is then characterized with a coupling G and its energy value
Up(G) as defined by Equation (7). To account for possible differences of scales between the
metrics on S1 and S2, we introduce a scaling factor s between the distances d1 and d2:

Up(s, G) = ∑
k,l

∑
k′ ,l′

G(k, l)
∣∣d1(k, k′)− s · d2(l, l′)

∣∣pG(k′, l′), (10)

where p is a constant and s is considered as a variable. The probability of finding the system
in a state characterized by G and s is:

P(s, G) =
1

Zβ(s, S1, S2)
e−βUp(s,G). (11)

In this equation, β is the inverse of the temperature, namely β = 1/(kBT) with kB the
Boltzmann constant and T the temperature. Zβ(s, S1, S2) is the partition function defined as

Zβ(s, S1, S2) =
∫

G∈G(S1,S2)
e−βUp(s,G)dµ12. (12)

An interesting property of a partition function Z is that most thermodynamic variables
of the system can be expressed as functions of Z, or as functions of its derivatives. This is
the case for the free energy of the system:

Fβ(s, S1, S2) = −
1
β

ln(Zβ(s, S1, S2)), (13)

as well as for the average energy Eβ(s, S1, S2) =< Up(s, G) >s∈R,G∈G by

Eβ(s, S1, S2) = −
∂ ln(Zβ(s, S1, S2))

∂β
. (14)

In addition to finding the coupling matrix G, we want to find the scaling factor s that
defines the best match between the two distributions. To reach this goal, we will minimize
the free energy Fβ(s, S1, S2) with respect to s. The minimized free energy is denoted by
Fβ(S1, S2) and similarly, the average energy computed with the minimal s is denoted as
Eβ(S1, S2).

We start with an important property of the free energy and of the average energy:

Proposition 1. For all β > 0, the free energy and the average energy are monotonically decreasing
functions of β. Both functions converge to dp(S1, S2) from which we can compute the GW distance

as GWp(S1, S2) = dp(S1, S2)
1
p .

Proof. How the functions Fβ and of Eβ behave as the parameter β is increased is studied
in Appendix A.

This approach to solving the GW problem is appealing. It is based on a temperature-
dependent free energy with a monotonic dependence on the inverse of the temperature,
β, and convergence to the actual GW distance at zero temperature. In practice, however,
it is of limited interest because the partition function and thus the extrema of the free
energy cannot be computed explicitly. We propose using the saddle point approximation
to approximate these quantities. We will demonstrate that the corresponding mean field
values have the same properties as the exact quantities defined above. These mean field
values are easily calculated.

Following the method described in Ref. [23] to impose the constraints that define
G(S1, S2), the partition function can be rewritten as
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Zβ(s, S1, S2) =
∫ 1

0
∏
k,l

dG(k, l)e
−β ∑

k,l
∑

k′ ,l′
G(k,l)|d1(k,k′)−s·d2(l,l′)|pG(k′ ,l′)

×

∏
k

δ

(
∑

l
G(k, l)−m1(k)

)
∏

l
δ

(
∑
k

G(k, l)−m2(l)

)
. (15)

To account for the quadratic term in the exponential, we introduce new variables
C(k, l) that are constrained to mimic a cost function between S1 and S2:

Zβ(s, S1, S2) =
∫ 1

0
∏
k,l

dG(k, l)
∫ +∞

−∞
∏
k,l

dC(k, l)

e
−β ∑

k,l
G(k,l)C(k,l)

×

∏
k

δ

(
∑

l
G(k, l)−m1(k)

)
∏

l
δ

(
∑
k

G(k, l)−m2(l)

)

∏
k,l

δ

(
∑
k′ ,l′

∣∣d1(k, k′)− s · d2(l, l′)
∣∣pG(k′, l′)− C(k, l)

)
. (16)

Using the Fourier representation of a delta function,

δ(x) =
1

2π

∫ +∞

−∞
e−ixtdt, (17)

the partition function can be recast with integrals only. To do so, we introduce the Fourier
variables D(k, l), λ(k) and µ(l), with (k, l) ∈ [1, N1]× [1, N2]. Omitting the normalization
factors 1/(2π), the partition function can then be expressed as,

Zβ(s, S1, S2) =
∫ +∞

−∞
∏
k,l

dC(k, l)
∫ 1

0
∏
k,l

dG(k, l)e
−β ∑

k,l
C(k,l)G(k,l)

×

∫ +∞

−∞
∏

k
dλ(k)e

−iβ ∑
k,l

λ(k)G(k,l)+iβ ∑
k

λ(k)m1(k) ∫ +∞

−∞
∏

l
dµ(l)e

−iβ ∑
k,l

µ(l)G(k,l)+iβ ∑
l

µ(l)m2(l)
(18)

∫ +∞

−∞
∏
k,l

dD(k, l)e
iβ ∑

k,l
D(k,l)C(k,l)−iβ ∑

k,l
D(k,l) ∑

k′ ,l′
|d1(k,k′)−s·d2(l,l′)|pG(k′ ,l′)

.

Note that we have introduced an explicit scaling factor β for the variables D(k, l), λ(k)
and µ(l). The corresponding terms are then consistent with the energy term. Note also
that the terms within the integrals in Z are now complex functions, while the partition
function Z itself is real. For sake of clarity, we include the i in D(k, l), λ(k) and µ(l), i.e.,
D(k, l) ≡ iD(k, l), λ(k) ≡ iλ(k) and µ(l) ≡ iµ(l). Those variables are now complex.

After rearrangements,

Zβ(s, S1, S2) =
∫ +∞

−∞
dC(k, l)

∫ +∞

−∞
dD(k, l)

∫ +∞

−∞
∏

k
dλ(k)

∫ +∞

−∞
∏

l
dµ(l)

e
β

(
∑
k,l

C(k,l)D(k,l)+∑
k

λ(k)m1(k)+∑
l

µ(l)m2(l)

)
(19)∫ 1

0
∏
k,l

dG(k, l)e
−β ∑

k,l
G(k,l)(C(k,l)+λ(k)+µ(l)+ ∑

k′ ,l′
|d1(k,k′)−s·d2(l,l′)|pD(k′ ,l′))

.
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Shifting C(k, l)← C(k, l) + ∑
k′ ,l′
|d1(k, k′)− s · d2(l, l′)|pD(k′, l′),

Zβ(s, S1, S2) =
∫ +∞

−∞
dC(k, l)

∫ +∞

−∞
dD(k, l)

∫ +∞

−∞
∏

k
dλ(k)

∫ +∞

−∞
∏

l
dµ(l)

e
β

(
∑
k,l

C(k,l)D(k,l)+∑
k

λ(k)m1(k)+∑
l

µ(l)m2(l)

)
e

β

(
∑
k,l

∑
k′ ,l′

D(k,l)|d1(k,k′)−s·d2(l,l′)|pD(k′ ,l′)

)
(20)∫ 1

0
∏
k,l

dG(k, l)e
−β ∑

k,l
G(k,l)(C(k,l)+λ(k)+µ(l))

.

We can now perform the integration over the real variables G(k, l) to get

Zβ(s, S1, S2) =
∫ +∞

−∞
dC(k, l)

∫ +∞

−∞
dD(k, l)

∫ +∞

−∞
∏

k
dλ(k)

∫ +∞

−∞
∏

l
dµ(l)

e
β

(
∑
k,l

C(k,l)D(k,l)+∑
k

λ(k)m1(k)+∑
l

µ(l)m2(l)

)
e

β

(
∑
k,l

∑
k′ ,l′

D(k,l)|d1(k,k′)−s·d2(l,l′)|pD(k′ ,l′)

)
(21)

∏
k,l

1− e−β(C(k,l)+λ(k)+µ(l))

β(C(k, l) + λ(k) + µ(l))
.

We rewrite this partition function as

Zβ(s, S1, S2) =
∫ +∞

−∞
dC(k, l)

∫ +∞

−∞
dD(k, l)

∫ +∞

−∞
∏

k
dλ(k)

∫ +∞

−∞
∏

l
dµ(l)e−βFβ , (22)

where Fβ is the effective free energy defined by:

Fβ = −∑
k,l

D(k, l)C(k, l)−
(

∑
k

λ(k)m1(k) + ∑
l

µlm2(l)

)
+∑

k,k′
∑
l,l′

D(k, l)
∣∣d1(k, k′)− s · d2(l, l′)

∣∣pD(k′, l′) (23)

− 1
β ∑

k,l
ln

(
1− e−β(C(k,l)+λ(k)+µ(l))

β(C(k, l) + λ(k) + µ(l))

)
.

Let Ḡ(k, l) and s̄ be the expected values of G(k, l) and s with respect to the probability
function given in Equation (11) (i.e., the values that lead to this probability to be maximum).
It is unfortunately not possible to compute these expected values directly as even though
we now have an expression for the partition function, this expression is not analytical. We
use instead the concept of a saddle point approximation (SPA). The SPA is computed by
searching for the effective free energy extrema with respect to the variables C(k, l), D(k, l),
λ(k), µ(l), and s:

∂Fβ

∂C(k, l)
= 0 and

∂Fβ

∂D(k, l)
= 0,

∂Fβ

∂λ(k)
= 0 and

∂Fβ

∂µ(l)
= 0, (24)

∂Fβ

∂s
= 0.

These equations define the following system of four equations:
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D(k, l) = φ(β(C(k, l) + λ(k) + µ(l)))
C(k, l) = 2 ∑

k′ ,l′
|d1(k, k′)− s · d2(l, l′)|pD(k′, l′)

∑
l

D(k, l) = m1(k)

∑
k

D(k, l) = m2(l)

(25)

where,

φ(x) =
e−x

e−x − 1
+

1
x

. (26)

For all real values x, the function φ(x) is defined and continuous (once we set
φ(0) = 0.5). It is monotonically decreasing over R, with the asymptotes y = 1 and y = 0 at
−∞ and +∞, respectively.

The free energy Fβ(s, S1, S2) can then be minimized with respect to s, namely
∂Fβ

∂s = 0,
leading to the equation:

∑
k,k′

∑
l,l′

D(k, l)d2(l, l′)
∣∣d1(k, k′)− s · d2(l, l′)

∣∣p−2
(d1(k, k′)− s · d2(l, l′))D(k′, l′) = 0, (27)

which needs to be solved for s. Given D(k, l), this equation is polynomial in s, with degree
p− 1. We will see in the implementation section that in the special case p = 2, the solution
is easy to obtain.

We have the following property that relates the solutions of the SPA system of equa-
tions to the expected values for the transport plan:

Proposition 2. Let S̄ be the expected state of the system with respect to the probability given in
Equation (11). S̄ is associated with an expected transport plan Ḡ and optimal scaling factor s̄. Let
DMF(k, l), CMF(k, l), λMF(k), µMF(l)and s̄ be the solutions of the system of Equations (25) and (27).
Then the following identities hold,

Ḡ(k, l) = φ(β(CMF(k, l) + λMF(k) + µMF(l))) = DMF(k, l). (28)

Note that the solutions are mean field solutions, hence the superscript MF.

Proof. See Appendix B.

Equation (28) shows that each element of Ḡ(k, l) is built to be in the range of φ(x),
namely (0, 1), as expected by the constraints on G. This optimal coupling matrix Ḡ(k, l)
is real, and therefore the variables C(k, l), D(k, l), λ(k) and µ(l) must be real. Otherwise
stated, note that the integral defining the partition function (see Equation (22)) does not
depend on the choice of the integration path. The saddle point Equation (25) shows that a
path parallel to the real axis for each of the variables is preferred.

For a given value of β, the expected values Ḡ(k, l) define a coupling GMF
β = Ḡ

between S1 and S2 that is an extremum of the free energy defined in Equation (24).
This extremum is referred to as FMF

β while the corresponding optimal internal energy is

UMF
β = ∑

k,k′
∑
l,l′

GMF(k, l)|d1(k, k′)− s̄ · d2(l, l′)|pGMF(k′, l′). Those two values are mean field

approximations of the exact free energy and internal energy defined in Equations (13) and (14),
respectively. They satisfy the following properties:

Proposition 3. FMF
β and UMF

β are monotonic decreasing functions of the parameter β. They both

converge to the GW quantity dp(S1, S2), with the GW distance being
(
dp(S1, S2)

) 1
p .
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Proof. See Appendix C.

The benefits of the proposed framework that recasts the GW problem as a temperature
dependent process are visible from Proposition 3. First, because of the exponential ratio in
the function φ(x), the equations provide good numerical stability for computing the optimal
coupling matrix G. Second, the energy associated with the solution of the modified problem
approaches the traditional GW distance when T → 0. Finally, the temperature-dependent
convergence is monotonic.

4. Implementation

The preceding section defines a framework for solving the GW optimal transport
problem for any value of the parameter p. In practice, most applications consider the
square loss with p = 2. This leads to two simplifications:

(i) Faster computation of the “cost matrix” C.Recall that in the SPA system of equations,
the cost matrix C is defined as:

C(k, l) = 2 ∑
k′ ,l′

∣∣d1(k, k′)− s · d2(l, l′)
∣∣pD(k′, l′),

with a total time complexity of O(N2
1 N2

2 ) to compute the whole matrix. In the special
case p = 2, the absolute value is not necessary and the equation can be rewritten in
matrix form as

C = 2(d1 � d1)D1N21
T
N2

+ 2s21N11
T
N1

D(d2 � d2)− 4sd1Dd2, (29)

where 1N is a vector of ones of dimension N and � is the Hadamard product. The
time complexity of computing C using this equation of O(N2

1 N2 + N1N2
2 ), a significant

improvement compared to the general case when N1 and N2 are large. This property
was already proposed as “Proposition 1” by Peyré et al. [22].

(ii) Computing the scaling factor s. In the general case, given the matrix D, solving
Equation (27) for the scaling factor s amounts to finding the zeros of a polynomial
function of degree p − 1, with possibly p − 1 real roots (see Equation (27)). In the
specific case p = 2, however, there is a unique solution to this problem, defined as

s =
∑
k,k′

∑
l,l′

D(k, l)d1(k, k′)d2(l, l′)D(k′, l′)

∑
k,k′

∑
l,l′

D(k, l)d2(l, l′)2D(k′, l′)
. (30)

We have implemented the finite temperature GW framework for p = 2 in a C++
program FreeGW that is succinctly described in Algorithm 2.

FreeGW is based on multiple iterative procedures. The outer loop performs a temper-
ature annealing: the parameter β (inverse of the temperature) is gradually increased. At
each value of β, the scaling factor and transport plan are computed iteratively. First, they
are initialized at their values at the previous temperature (step 3). A cost matrix is then
computed (step 4) and a non linear system of equations defined by equations 3 and 4 of the
SPA system (25) is solved using an iterative Newton-Raphson method (step 5). This step
is akin to solving the optimal transport problem at this temperature. Complete details on
how to solve this system can be found in Ref. [23,24]. Once this system is solved for λ and
µ, a new estimate of the transport plan is derived (step 6). This new transport plan is then
used to compute new estimates of the cost matrix (step 4) and of the scaling factor (step
8). The procedure is then iterated over both estimates. When these new estimates do not
change anymore (within a tolerance TOL generally set to 10−4), the optimal coupling GMF

β

and the associated energy UMF(β) are calculated. The program stops when the inverse of
the temperature has reached its maximum value that was provided as input (usually βin f

is set to 10+12.
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Algorithm 2 FreeGW: a temperature dependent framework for computing the Gromov
Wasserstein Distance between two weighted set of points belonging to two different metric
spaces.

Input: N1 and N2, the size of the two sets of points S1 and S2. The mass vectors m1(k)
and m2(l), for k ∈ [1, N1] and l ∈ [1, N2]. The distance matrices d1(k, k′) and d2(l, l′) over
all points (k, k′) ∈ S2

1 and (l, l′) ∈ S2
2. Initial and final temperatures β0, βin f . Tolerance,

TOL; N, maximum number of iterations.
Initialize: Initialize transport plan G0(k, l) = m1(k)m2(l) and scaling factor f0 = 1; Set
STEP =

√
10. Set β0 = β0/STEP

for i = 1, . . . do
(1) Set βi = STEP ∗ βi−1. If βi ≥ βin f break;
(2) Initialize s0 = fi−1
for j = 1, . . . until convergence do

(3) Initialize D0 = Gi−1;
for m = 1, . . . until convergence do

(4) Compute Cm from Dm−1 and sj−1 using Equation (29).
(5) Solve non linear system of equations for λ and µ:

∑
l

φ(βi(Cm(k, l) + λ(k) + µ(l))) = m1(k)

∑
k

φ(βi(Cm(k, l) + λ(k) + µ(l))) = m2(l),

Set solutions as λsol , µsol

(6) Compute Dm(k, l) = φ(βi(Cm(k, l) + λsol(k) + µsol(l)))
(7) If ||Dm − Dm−1|| < TOL, break

end for
(8) Compute current scaling factor sj using converged Dm and Equation (30);
(9) If |sj − sj−1| < TOL, break

end for
(10) Update Gi = Dm and fi = sj.

end for
Output: The converged transport plan GMF

βin f
= Gi, the scaling factor sMF

βin f
= fi, and the

corresponding GW2 distance
√

UMF
βin f

.

5. Computational Experiments

We present experimental results highlighting the advantages of using the GW frame-
work to compare shapes defined by unstructured triangulations of their surfaces. We use
synthetic (the TOSCA dataset) and “real life” (protein structures) datasets.

5.1. Shape Similarity: Synthetic Data from TOSCA

We use the Gromov-Wasserstein formalism to detect non-rigid shape similarity. The
experiments were performed on meshes taken from the TOSCA non-rigid dataset [36,
37]. Eleven classes of objects were considered (see Figure 1): 8 classes of animals, cats
(9 poses), dogs (11 poses) , gorilla (21 poses), horses (17 poses) , seahorses (6 poses), shark
(1 pose), wolves (3 poses), two male shapes, Michael (20 poses) and David (15 poses), one
female shape, Victoria (24 poses), and one mythical shape, centaurs (6 poses), for a total of
133 shapes. Note that compared to the full TOSCA non rigid dataset, we removed all lions
as their meshes had severe topological issues at the level of the mane. Each class consists of
the same shape under different poses. These poses are the results of transformations that
were designed to mimic non-rigid motions within objects (see [36,37], for details). Note
that the different representatives within a class may be represented with different meshes
(i.e., in addition to having different geometry those meshes may have different topologies),
and may have different genera. Each shape is represented with a triangulated mesh with
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approximately 3400 vertices and 6600 faces, with the exception of the gorilla and seahorse
meshes that include approximately 2100 vertices and 4200 faces. The Euclidean farthest
point sampling procedure was used to select 1000 points from each shape’s set of vertices.
In brief, one begins by selecting a point at random from the set of vertices. The second
point is chosen among the remaining vertices as the one that is at the greatest distance from
this first point. Subsequent points are always chosen to maximize the shortest distance to
the previous points.

β = 3×107 β = 1012

Figure 1. Distance matrices for shape similarity within the TOSCA dataset using the Gromov-
Wassertein framework at two different “temperatures”, β = 3× 107 (left) and β = 1012 (right).
Blue colors represent small distances (high similarity), while yellow colors represent large distances
(low similarity).

In each experiment, a pair of shapes i and j is represented with their sets of sampled
vertices, Si and Sj, and the geodesic distance matrices between those vertices, di and dj.
The geodesic distances are computed using the method proposed by Mitchell et al. [38]
and implemented in the code “geodesic” by Danil Kirsanov, available at https://code.
google.com/archive/p/geodesic/, and accessed on 1 June 2020. The masses associated to
the vertices are set uniform, equal to 1/Nv, where Nv is the number of vertices. The GW
problem is solved using FreeGW up to convergence. At each value of β,

√
UMF

β (see above),

defines DMβ(i, j), i.e., the (i, j)-th element of the distance matrix DMβ over all shapes in

our TOSCA dataset. Note that
√

UMF
β satisfies the properties of a metric distance only

when β is large (at convergence with respect to β). We generated a set of distance matrices
DMβ for β ranging from 105 to 1012. Figure 1 provides graphical representations of DMβ

for two different temperatures, β = 3× 107 and β = 1012. Note that the discrimination
between the different shapes of TOSCA improves as β increases.

In order to assess quantitatively how well the different distance matrices DMβ classify
correctly the shapes in TOSCA, we designed the following set of classification experiments.
We first built a reference set: we selected randomly half the shapes from each of the
11 classes within TOSCA to form this reference set. Each remaining shape was then
classified by considering its distances (derived from DMβ) to all shapes in the reference
set, and assigning it to the class of the shape with the shortest such distance (this is a
1-nearest neighbor classification experiment). By comparing this predicted class with the
actual class to which the shape belongs we derived an estimate for the probability of
correct classification P(β) based on DMβ. We repeated this procedure over 10,000 random
selections of the reference set. In Figure 2, we plot the averaged P(β) computed over those
10,000 experiments as a function of the inverse temperature β. The lower the temperature
(or equivalently the higher the parameter β), the more discriminative the energy UMF

β is.

https://code.google.com/archive/p/geodesic/
https://code.google.com/archive/p/geodesic/
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The highest level of correct classification is already observed for β = 108, i.e., significantly
before convergence to the GW2 distance, which is usually reached for β > 1011.
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Figure 2. Quality of 3D shape recognition based of the temperature-dependent GW distances as a
function of temperature. The probability of classifying correctly a shape into its own class within the
TOSCA dataset using the distance measure DMβ ≡ UMF

β (see text for details) is plotted against β, the
inverse of the temperature. The curve is generated from the arithmetic means over 10,000 experiments
(see text for details). Shaded areas represent standard deviations over those experiments.

5.2. Shape Correspondence: Synthetic Data from SHREC19

The second test case we consider is shape correspondence: identifying corresponding
points between two (or more) 3D shapes. Note that this is different from shape registra-
tion, namely finding a transformation that brings one shape “close” to another. Indeed,
correspondence can be derived from registration, while the reverse may not be true. The
Gromov-Wassertein framework allows for finding correspondence, as the latter is embed-
ded in the optimal transport plan it computes.

To assess how well GW can recover correspondence, we considered the SHREC19
benchmark [39]. This benchmark includes 3D shapes represented with a triangular mesh
of their surfaces. These shapes are derived from 3D scans of real-world objects, with each
object being present in multiple poses associated with one or more types of deformation.
The deformations are classified into four different groups, referred to as test-sets. Those
four groups correspond to articulated deformations (group 0), isometric deformations
(group 1), non-isometric deformations (group 2), and topologic/geometric deformations
(group 3). Example of shapes for each test-set are provided in Figure 3.

The SHREC19 benchmark includes 76 shape pairs that are selected from the four
different groups, and regrouped in four test sets (Table 1). Test-set 0 includes 14 pairs
of articulating wooden hands from group 0. Test-set 1 includes 26 pairs of models corre-
sponding to clothed humans as well as hands from group 1. Test-set 2 includes 19 pairs
of models from the group 2. Each of those pairs includes a thin clothed mannequin and
a larger mannequin, ensuring the the transformation is non-isometric. Finally test-set 3
includes 17 pairs of shapes from group 3 that contain challenging geometric and topological
changes. We chose the low resolution version of this benchmark. In this version, each
shape is represented by approximately 10,000 vertices and 20,000 triangles. For each pair of
shapes, the ground-truth correspondence is known.
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Group 0: articulated deformations Group 1: isometric deformations

Group 2: non isometric deformations Group 3: topologic/geometric deformations

Figure 3. Examples of shapes in each group of the SHREC19 benchmark [39].

Table 1. Quality of different methods for computing correspondence between 3D shapes.

Method a Test-Set 0 Test-Set 1 Test-Set 2 Test-Set 3 All Test Sets

RPTS [40] 0.920 b 0.926 0.824 0.929 0.899
NRP [41] 0.878 0.899 0.801 0.858 0.862
WRAP 0.853 0.920 0.772 0.870 0.856
KM [42] 0.760 0.865 0.757 0.799 0.804
FreeGW d 0.706 0.879 0.550 0.320 0.588
Algo1 e 0.666 0.846 0.490 0.338 0.548
GISC [43] 0.565 0.659 0.674 NA c NA c

a Rows are in descending order of score over all test sets. b Area under the curve (AUC) for the cumulative
distribution functions of the normalized geodesic errors in the correspondences. Results for the first five methods
are derived from Ref. [39]. c Not Available in Ref. [39]. d Our results based on Algorithm 2 that consider an
annealing procedure in the regularization parameters. e Our results based on Algorithm 1.

The quality of shape correspondence is evaluated by measuring normalized geodesics
between the ground-truth (available as part of the SHREC19 dataset) and the predicted
correspondence that is derived from the GW optimal coupling. Specifically, let xi be a point
on shape X, yi its predicted correspondence on shape Y and gi the ground truth position of
xi on Y. Note that yi and gi are both on the surface of Y. The normalized geodesic error
ε(xi) between the yi and gi is computed as:

ε(xi) =
dY(yi, gi)

area(Y)1/2 ,

where dY(yi, gi) is the geodesic distance between yi and gi on the surface of Y. The geodesic
distance is computed with the algorithm from Mitchell et al. [38], as described in the
previous subsection.

We compared two different implementations of the GW framework, based on two dif-
ferent algorithms, named the fixed point method described in Algorithm 1 and the physics-
based algorithm described in Algorithm 2, both implemented in FreeGW. Algorithm 1 uses
a fixed regularization parameter, ε. To make sure that the corresponding transport plan
is close to the actual GW transport plan, we chose ε = 10−12. Traditional regularized OT
solver do not work well for such a small ε. We chose therefore our own OT solver [23,24]
to solve step 2 in Algorithm 1. In contrast, Algorithm 2 is based on an annealing plan
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with respect to the parameter β, such that when β is large, the outputs of the program are
guaranteed to match the actual GW results.

In each experiment, a pair of shapes i and j is represented with their complete sets
of vertices, Si and Sj, and the geodesic distance matrices between those vertices, di and
dj. The masses of the vertices are set uniform. The GW problem is solved using the two
algorithms mentioned above. Both derive a transport plan G. For each vertex x on i, its
correspondence y on j is set to the index of the maximum value on the row corresponding to
x in G. Figure 4 shows the corresponding cumulative geodesic errors for the two algorithms
for the four test sets in SHREC19. We observed that Algorithm 2 as implemented in FreeGW
performs better for shape correspondence than the simpler Algorithm 1, on all test sets,
and significantly better from shapes with isometric deformations (test set 1).
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Figure 4. Cumulative distribution functions for the geodesic errors for the correspondence computed
with FreeGW (red), which implements an annealing procedure in the regularization parameter β,
and computed with Algorithm 1 (blue), that only considers one regularization value (see text for
details). Results are shown for all four test sets in SHREC19, that consider articulated deformations
(test set 0), isometric deformations (test set 1), non-isometric deformations (test set 2), and topological
or geometric deformations (test set 3).

The SHREC19 dataset was originally used as a benchmark for a competition on
comparing 3D shape registration that was part of the Workshop on 3D Object Retrieval that
was held in Genova, Italy in may 2019. Several groups entered in this competition; results
were published in Ref. [39]. Here we compare results based on the GW framework, as
presented above, with results from the five top methods that were part of this competition.
We briefly describe those five methods below.

In the first method, dubbed RTPS, the correspondence map between the template
shape and the target shape is computed iteratively. Each iteration is built from two suc-
cessive steps. In the first step, the vertices estimated to be in correspondence between
the template and target shapes are derived from the registration result obtained from the
previous iteration. These computed correspondences are used to derive a correspondence
mapping. In the second step, the mapping is updated by using the closest points between
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template and target shapes identified by the mapping to find additional points that are in
correspondence [40]. The second method, NRPA, is also based on registration. It consists
of four key components, namely modeling of the deformation (assumed to be anisotropic
and non-isometric), computing the correspondences, pruning those correspondences, and
optimizing the deformation [41]. The third method, KM, is a kernel-based method, where
the registration problem is formulated as matching between a set of pairwise and pointwise
descriptors, imposing a continuity prior on the mapping [42]. The fourth method, GISC,
uses a genetic algorithm to find the permutation matrix that encodes the correspondences
between the vertices of the two shapes to compare [43]. Note that this is the most similar
method to the GW formalism, as this permutation matrix is akin to a transport plan. Fi-
nally the fifth method, WRAP, is based on the commercial software WARP that includes a
wrapping tool that non-rigidly fits one 3D shape to another, from which correspondence
can be derived.

We report the results of the comparisons of the qualities of the different methods in
Table 1 as the areas under the curve (AUC) for the cumulative distribution functions of the
geodesic normalized errors. Results are divided according to the test sets of SHREC19, as
well as summarized over all test sets.

There are a few observations we can make based on Table 1. First, the AUC values
provides a quantification of the quality of a method for finding correspondence: the larger
the value, the better the method. In particular, Table 1 confirms that the correspondences
computed from the GW framework with temperature annealing (Algorithm 2) are better
than those computed with the fixed point method described in Algorithm 1. Second the
four methods based on registration, RTPS, NRP, WRAP, and KM, all perform better than
the method that only compute correspondences. This is likely due to the fact the the
deformations included in the SHREC19 dataset are all based on a mathematical morphing,
and therefore are expected to be captured with a mapping function. Finally, the GW
formalism performs better than a genetic algorithm (implemented in GISC). This genetic
algorithm is the one closest to the GW formalism in its concept.

5.3. Shape Similarity: Morphodynamics of Protein Structure Surfaces

Different experimental techniques lead to different representations of protein struc-
tures. For example, high-resolution X-ray crystallography and NMR techniques derive
models of proteins that include all their atoms and that are accurate at the Angstrom level.
Recent progress on cryo electron microscopy (EM) can now often also reach atomic resolu-
tion. However, the difficulty of maintaining the integrity of stable complexes of interest
on the various types of grids necessary to mount the sample in thin ice makes it often
desirable to resort to negative staining techniques, in which case the resolution is much
lower (typically 10–25 Angstroms). A low-resolution model derived from EM techniques
is often represented as a density map, namely a shape characterized by its surface. Such
a model is often available long before its high-resolution counterpart, as EM techniques
are usually easier, faster, and cheaper to implement. It is therefore of interest to develop
methods that can analyze the geometry of a protein directly from its EM density map. Such
methods should generate information similar to those derived from methods that work
directly on the high-resolution model of the protein structure. We consider here the problem
of comparing the geometry of two protein structures using the GW distance between the
surfaces of their density maps. To assess if this distance obtained from low resolution
models of the protein structures mimic what could be found from high-resolution models,
we compared it with the cRMS distance between atomistic models of the same proteins.
We performed these tests on the protein calmodulin. Results are shown in Figure 5.
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Figure 5. Analyzing the dynamics of the conformational transition of calmodulin using coarse
and high resolution models of the protein. We built a trajectory including 51 conformations between
the apo (i.e., ligand-free) structure and an holo (i.e., with a ligand-bound) structure of the protein
calmodulin using the program MinActionPath [44]. The transition between those two conformations
leads to significant changes in the structure, as illustrated with the models of the structures shown
below the horizontal axis. For all those 51 conformations, we computed their cRMS distances to the
apo structure (structure number 0). These cRMS values are plotted versus the conformation number
as a red solid line. In parallel, we plot the GW distance between the surfaces representing the same
conformers and the surface of the apo protein as blue dots. The cRMS values and corresponding GW
values exhibit a high correlation (0.985). The same observation can be made when comparing the
51 conformations with the holo structure based on cRMS (dashed red line) and based on the GW
distance between surfaces (blue x’s). The cartoon representations of the high resolution structures and
surface representations of the same structure are shown for a few conformations along the trajectory
below the horizontal axis.

Calmodulin is a calcium binding protein that is found in all eukaryotic cells. Its
structure looks like a dumbbell, with two small domains separated by a linker region. It is
the flexibility of this linker that defines the ability of calmodulin to bind to a wide range of
ligands [45].

We considered two conformations for calmodulin, a conformation in the absence
of a ligand (referred to as the apo or ligand-free conformation) and a conformation in
the presence of a substrate (referred to as holo ligand-bound conformation, where we
use interchangeably the terms ligand and substrate to indicate a molecule that binds to
calmodulin). Those conformations were found in the database of protein structure, the
PDB [46], with codes 1CLL and 1A29, respectively. We built a trajectory between these
two conformations. This trajectory is designed to mimic the structural transition that
results from the binding of the ligand. We used the program MinActionPath who is
designed to generate the most probable trajectory between the two conformers, namely
the one with minimal action (for details, see [44]). The trajectory was sampled over 51
conformations, each represented with all the atoms of calmodulin. We then computed
the distances between any two of these conformations in two different ways. First, we
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used the coordinate Root Mean Square (cRMS) distance computed over the Cα atoms of
the high-resolution structures (see Refs. [47,48] for details on how to compute the cRMS).
Second, we compared the same structures using their skin surfaces [49]. To derive those
skin surfaces, we started with the common convention in chemistry to represent a structure
as a union of balls, with each ball corresponding to an atom. The coordinates of an atom
define the center of a ball that is associated with it. The atom is also characterized with
a van der Waals radius based on its chemical nature. The radius of the ball is then set to
this vdW radius, plus a probe radius of R = 1.4 Å, designed to mimic a water molecule
in its proximity. The skin surface is then defined as the boundary of this union of balls.
We generated a triangular mesh on the skin surface using the program smesh [50,51]. We
found that those meshes have similar sizes for all 51 conformations we considered, with on
average approximately 40,000 vertices and 70,000 triangles. 1000 points were selected from
each mesh using the Euclidean farthest point sampling procedure described above for the
TOSCA dataset. We compared these sampled meshes using FreeGW.

We compared all 51 conformations of calmodulin with both the apo and holo forms,
using the cRMS and the GW distances. Results of these calculations are shown in Figure 5.
We do observe that the GW distances measured based on the low resolution skin surfaces
correlate well with the cRMS distances computed from the high resolution, atomistic
representations of the proteins. The correlation have coefficients above 0.96.

5.4. How Round Is Calmodulin?

A visual inspection of Figure 5 indicates that the ligand-bound conformation of calmod-
ulin is more compact that its ligand-free conformation. To quantify this idea of “compact-
ness” we use two independent measures of the surface of the proteins:

(i) The sphericity S of a surface F quantifies how well it encloses volume. It is expressed as
the surface area of an equivalent sphere (i.e., with the same volume V as the volume
enclosed by F) divided by the surface area A of F:

S = π1/3(6V)2/3/A. (31)

The sphericity is at most one, and equals one only for the round sphere,
(ii) The GW distance between the surface of the protein and the surface of a round sphere.

We computed these two measures on all 51 conformations of the trajectory described
in the previous subsection. Note that to compare the surfaces of the different conformations
of calmodulin to the round sphere, we need a triangular mesh on the surface of that
sphere. We generated this mesh by placing N = 1000 points uniformly on the sphere
and generating a triangulation from these points. We used the Matlab package “Uniform
sampling of the sphere” available from [52] to position the points and QHull [53] to generate
the triangulation.

We compared the 51 sampled meshes representing the 51 conformations of calmodulin
(see above for details) with the mesh representing the surface of the sphere using FreeGW.
Results of these calculations are compared to the corresponding sphericity of the meshes
computed using Equation (31) in Figure 6. The GW distances and the sphericity are
(anti) correlated (correlation coefficient: −0.8): as the sphericity increases, the level of
correspondence between the protein surface and the sphere increases, and the GW distance
decreases. We observe an inflection point for the sphericity along the trajectory at the 40th
conformation: the GW distance shows a similar inflection point at the same conformation.
This indicates that the GW distance between a protein represented with its surface and the
sphere has value as a tool to assess the compactness of that protein.
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Figure 6. The sphericity (left axis, blue) and the GW distance to the round sphere (right axis, red)
of the 51 conformations of calmodulin in its trajectory from the ligand-free to the ligand-bound
conformations.

6. Discussion

In the discrete Gromov Wasserstein problem, each set of points considered is charac-
terized by a distance matrix that captures all pairwise distances between the points. When
comparing two such sets of points, there is no guarantee that those distances have the same
scale. For example, for the problem of comparing 3D shapes discussed in this paper, it is
possible that those shapes were captured with different 3D scanners with different internal
references. The shapes themselves may have different scales, for example when comparing
animals of different sizes. One approach to circumvent this problem is to normalize the
corresponding distance matrices, for example by setting the largest distance in each matrix
to be 1. This approach is not optimal, especially in the presence of noise, as it is biased
towards a single distance. While there are other ways to normalize a distance matrix, we
have used a different approach to handle the scaling problem. Instead of arbitrarily scaling
the distance matrices, we have added a free scaling parameter in our approach that is
concurrently optimized with the transport plan between the two sets of points.

One of the current limitation of the algorithm we propose, Algorithm 2 implemented
in FreeGW, is that it is demanding in computing power. It includes three nested loops:
the outer loop controls the temperature annealing, the middle loop allows for an iterative
update of the scaling factor, while the most inner loop is used to solve the SPA system
at a given scaling factor by iterating over a cost matrix between the two sets of points.
In addition, this SPA system is non linear and therefore it is also solved iteratively (see
Refs. [23,24]). We have used a Newton-Raphson approach to solve this system. It should
be noted that this approach requires that the Hessian of the free energy be computed (i.e.,
the Jacobian of the system of non linear equation). There are ways, however, to solve the
system without the need to compute second derivatives (see for example Ref. [54]). We will
try such alternate approaches in future work. For large problems, the overall computational
cost can become large. For example, comparing two shapes of the SHREC19 benchmark,
each with 10,000 points, require on average 12,500 s (i.e., approximately 3.5 h). There are
several options to reduce this computing time. First, all calculations presented in this
paper were run to convergence, i.e., up to an inverse temperature β = 10+12. As shown in
Figure 2, if the problem is to classify shapes, there is no need to go to such a large value for
β. Second, the size of the problem itself can be reduced by sampling: this is the approach
we used for comparing shapes in the TOSCA dataset for example. Comparing two shapes
of the TOSCA dataset, each with 1000 points, require on average 70 s. However, none of
those solutions are general. For instance, sampling cannot be applied if we are interested
directly in the transport plan between the two sets of points, and not just in the optimized
distance between the sets. We will work on the problem of optimizing the running time of
our algorithm in future studies.
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7. Conclusions

In this study, we developed a novel method based on statistical physics for solving the
discrete Gromov Wasserstein (GW) problem. Given two sets of measured points S1 and S2
associated with two possibly different metric spaces, the GW problem amounts to finding
a correspondence between those points, stored in a transport plan, which minimizes an
energy based on comparisons of pairwise distances within each set. We build a free energy
function that, at a finite temperature, reflects the GW problem’s constraints. While the
extremum of this free energy cannot be computed exactly, it can be estimated using a saddle
point approximation. At each temperature, the corresponding mean field solution defines
an optimal coupling between the two discrete probability measures that are compared,
and a distance between those measures. We proved that this distance approaches the
traditional GW distance when T → 0 in a monotonic way, thereby amenable to temperature
annealing. We have illustrated the usefulness of our approach on the problem of comparing
shapes defined by unstructured triangulations of their surfaces and revealed that it allows
for accurate and automatic non-rigid registration of shapes. We have shown that the
GW distances computed from low-resolution, surface-based representations of proteins
correlate well with the corresponding distances computed from atomistic models for the
same proteins.

It is important to realize that the method we have proposed to solve the GW problem
only applies under the assumption of balance, namely to problems in which the sum of
the masses on the two discrete set of points are equal. This is often too restrictive in many
applications, such as those in which only a partial mapping is sought out. The unbalanced
GW problem is an open problem [55], which we intend to work on.
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Appendix A. Proof of Property 1: Monotonicity of the Free Energy and Average Energy

Let us consider two sets of points S1 and S2 embedded in two metric spaces (M1, d1)
and (M2, d2) and mass vectors m1 and m2, respectively. We associate to this system
a transport plan polytope G(S1, S2) and a scaling factor s between distances within S1
and distances within S2. Recall that any matrix G in this polytope satisfies the three
conditions in Equation (8). The free energy Fβ(s, S1, S2), internal energy Eβ(s, S1, S2), and
entropy Sβ(s, S1, S2) of this system are related through the general relation Fβ(s, S1, S2) =
Eβ(s, S1, S2)− TSβ(s, S1, S2), where T is the temperature and β = 1/(kBT).

We first prove that the volume of the polytope G(S1, S2) is smaller than 1. Indeed,
considering the constraints that define this polytope, we have

∫
G∈G(S1,S2)

dµ12 =
∫ 1

0
∏
k,l

dG(k, l)∏
k

δ

(
∑

l
G(k, l)−m1(k)

)
∏

l
δ

(
∑
k

G(k, l)−m2(l)

)
. (A1)
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As the G(k, l) take values between 0 and 1, and as the delta functions restrain the
space of possible transport plans, we have indeed that

0 ≤
∫

G∈G(S1,S2)
dµ12 ≤ 1. (A2)

The internal energy is the thermodynamic average of the energy Up(s, G) (see
Equation (10)) and is given by

Eβ(s, S1, S2) =< U(s, G) >s∈R,G∈G(S1,S2)
=

d
(

βFβ(s, S1, S2)
)

dβ
, (A3)

while the entropy is given by

Sβ(s, S1, S2) = β2 dFβ(s, S1, S2)

dβ
= −

dFβ(s, S1, S2)

dT
. (A4)

An important implication of these relations is that

dEβ(s, S1, S2)

dβ
= −

(
〈Up(s, G)2〉 − 〈Up(s, G)〉2

)
, (A5)

where the thermodynamics averages <> are computed over R for s and over the polytope
G(S1, S2) for G. The quantity on the right is minus the variance of the energy. It is therefore
negative and this is true for all values of β. This property is true for all s and therefore for
s = s̄, the optimal value of s. Therefore,

dEβ(S1, S2)

dβ
=

dEβ(s̄, S1, S2)

dβ
≤ 0. (A6)

As a result, the internal energy of the system decreases as β increases. As Up(s̄, G) is
positive, Eβ(S1, S2) is positive: it has a limit when β→ ∞. This limit is the traditional GW
quantity dp(S1, S2) (see Section 2).

The entropy is negative. Indeed, as the total number of states at an energy Up(s, G) is
given by,

N (Up(s, G)) =
∫

G∈G(Si ,Sj)
δ

(
Up(s, G)−∑

k,l
∑
k′ ,l′

G(k, l)
∣∣d1(k, k′)− s · d2(l, l′)

∣∣pG(k′, l′)

)
dµ12. (A7)

As the volume of the polytope G(S1, S2) is smaller than 1 (see above),

0 ≤
∫

G∈G(Si ,Sj)
δ

(
Up(s, G)−∑

k,l
∑
k′ ,l′

G(k, l)
∣∣d1(k, k′)− s · d2(l, l′)

∣∣pG(k′, l′)

)
dµ12 ≤ 1, (A8)

which implies that

N (Up(s, G)) ≤ 1. (A9)

Since N (Up(s, G)) = eSβ(Up(s,G)), and all the properties above are valid for all s, they
are valid in particular for the value s = s̄ which minimizes the free energy. Taking s = s̄,
we get Sβ(S1, S2) ≤ 0 for all β (or equivalently for all T). The free energy is related to the
entropy by

dFβ(S1, S2)

dT
= −β2 dFβ(S1, S2)

dβ
= −Sβ(S1, S2). (A10)
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Consequently,

dFβ(S1, S2)

dβ
=

Sβ(S1, S2)

β2 ≤ 0. (A11)

Therefore the free energy of the system decreases as β increases. Its limit for β→ ∞
is the same as the limit of Eβ, namely the GW quantity dp(S1, S2), with the GW distance

being
(
dp(S1, S2)

) 1
p .

Appendix B. Proof of Proposition 2: Retrieving the Transport Plan from the
SPA Solutions

Let us first recall the definition of the partition function (Equation (22))

Zβ(s, S1, S2) =
∫ 1

0
∏
k,l

dG(k, l)
∫ +∞

−∞
∏
k,l

dC(k, l)

e
−β ∑

k,l
∑

k′ ,l′
G(k,l)|d1(k,k′)−s·d2(l,l′)|pG(k′ ,l′)

×

∏
k

δ

(
∑

l
G(k, l)−m1(k)

)
∏

l
δ

(
∑
k

G(k, l)−m2(l)

)

∏
k,l

δ

(
∑
k′ ,l′

∣∣d1(k, k′)− s · d2(l, l′)
∣∣pG(k′, l′)− C(k, l)

)
.

and of the corresponding effective free energy (Equation (24))

Fβ = −∑
k,l

D(k, l)C(k, l)−
(

∑
k

λ(k)m1(k) + ∑
l

µlm2(l)

)
+∑

k,k′
∑
l,l′

D(k, l)
∣∣d1(k, k′)− s · d2(l, l′)

∣∣pD(k′, l′)

− 1
β ∑

k,l
ln

(
1− e−β(C(k,l)+λ(k)+µ(l))

β(C(k, l) + λ(k) + µ(l))

)
.

Fβ is a function of 2N1N2 + N1 + N2 + 1 variables, namely D(k, l) and C(k, l) for
(k, l) ∈ [1, N1]× [1, N2], λ(k) for k ∈ [1, N1], µ(l) for l ∈ [1, N2], and s. The values of these
variables that solve the SPA conditions and minimize Fβ with respect to s are referred to as
DMF(k, l), CMF(k, l), λMF(k), µMF(l)and s̄, respectively.

To find the expected values Ḡ(k, l) we need to introduce a vector field u and modify
the partition function:

Zβ(u) =
∫ 1

0
∏
k,l

dG(k, l)
∫ +∞

−∞
∏
k,l

dC(k, l)

e
−β ∑

k,l
∑

k′ ,l′
G(k,l)|d1(k,k′)−s·d2(l,l′)|pG(k′ ,l′)

×

e
β(∑

k,l
G(k,l)u(k,l))

×

∏
k

δ

(
∑

l
G(k, l)−m1(k)

)
∏

l
δ

(
∑
k

G(k, l)−m2(l)

)

∏
k,l

δ

(
∑
k′ ,l′

∣∣d1(k, k′)− s · d2(l, l′)
∣∣pG(k′, l′)− C(k, l)

)
.
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Following the same procedure as described in the main text for evaluating this modi-
fied partition function, we find,

Fβ(u) = −∑
k,l

D(k, l)C(k, l)−
(

∑
k

λ(k)m1(k) + ∑
l

µlm2(l)

)
+∑

k,k′
∑
l,l′

D(k, l)
∣∣d1(k, k′)− s · d2(l, l′)

∣∣pD(k′, l′)

− 1
β ∑

k,l
ln

(
1− e−β(C(k,l)+λ(k)+µ(l)−u(k,l))

β(C(k, l) + λ(k) + µ(l)− u(k, l))

)
.

Then, the expected transport Ḡ(k, l) between point k in S1 and point l in S2is given by

Ḡ(k, l) = −
∂Fβ(u, v)
∂u(k, l)

∣∣∣∣∣
u=0,v=0,C=CMF ,D=DMFλ=λMF ,µ=µMF ,s=s̄

,

i.e.,

Ḡ(k, l) =
e−β(CMF(k,l)+λMF(k)+µMF(l))

e−β(CMF(k,l)+λMF(k)+µMF(l)) − 1
+

1
β(CMF(k, l) + λMF(k) + µMF(l))

= φ(β(CMF(k, l) + λMF(k) + µMF(l))) = DMF(k, l).

Appendix C. Proof of Proposition 3: Monotonicity and Limits of FMF(β) and U MF(β)

In Appendix A we have established that the exact free energy and internal energy
defined in Equations (13) and 14, respectively, are monotonic functions of the parameter
β, and converge to dp(S1, S2) when β→ ∞. Here we consider the approximation of those
quantities obtained with the saddle point approximation, namely the mean field values
FMF and UMF, and show that they satisfy the same properties.

Appendix C.1. Monotonicity of the Free Energy

The effective free energy Fβ defined in Equation (24) is a function of the distance
matrices d1 and d2 and of the real unconstrained variables C(k, l), D(k, l), λ(k), µ(l), and s.
For sake of simplicity, for any (k, l) ∈ [1, N1]× [1, N2], we define:

x(k, l) = C(k, l) + λ(k) + µ(l). (A12)

The effective free energy is then

Fβ = −∑
k,l

D(k, l)C(k, l)−
(

∑
k

λ(k)m1(k) + ∑
l

µlm2(l)

)

+∑
k,k′

∑
l,l′

D(k, l)
∣∣d1(k, k′)− s · d2(l, l′)

∣∣pD(k′, l′)− 1
β ∑

k,l
ln

(
1− e−βx(k,l)

βx(k, l)

)
. (A13)

As written above, Fβ is a function of the variables β, C(k, l), D(k, l), λ(k), µ(l), and s.
However, under the saddle point approximation, with s = s̄, namely its optimal value, the
free energy takes the value FMF

β , with the following constraints,
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∂FMF
β

∂C(k, l)
= 0,

∂FMF
β

∂D(k, l)
= 0,

∂FMF
β

∂λ(k)
= 0,

∂FMF
β

∂µ(l)
= 0, (A14)

∂FMF
β

∂s
= 0,

for all k ∈ [1, N1] and all l ∈ [1, N2]. In the following, we will use the notations
dFMF

β

dβ and
∂FMF

β

∂β to differentiate between the total derivative and partial derivative of FMF
β with respect

to β, respectively. Based on the chain rule,

dFMF
β

dβ
=

∂FMF
β

∂β
+ ∑

k,l

∂FMF
β

∂C(k, l)
∂C(k, l)

∂β
+ ∑

k,l

∂FMF
β

∂D(k, l)
∂D(k, l)

∂β
+

∑
k

∂FMF
β

∂λ(k)
∂λ(k)

∂β
+ ∑

l

∂FMF
β

∂µ(l)
∂µ(l)

∂β
+

∂FMF
β

∂s
∂s
∂β

. (A15)

Using the constraints defined in Equation (A15), we find that

dFMF
β

dβ
=

∂FMF
β

∂β
, (A16)

namely that the total derivative with respect to β is in this specific case equal to the
corresponding partial derivative, which is easily computed to be

dFMF
β

dβ
=

1
β2 ∑

k,l

[
ln

(
1− e−βxMF(k,l)

βxMF(k, l)

)
+ βxMF(k, l)φ(βxMF(k, l))

]
, (A17)

where φ(x) = e−x

e−x−1 + 1
x , as defined in Equation (26). Let f (x) = ln

(
1−e−x

x

)
+ xφ(x). As

mentioned in the main text of the paper, φ(x) is monotonically constrained in the interval
[0, 1] and therefore correctly represent the possible values for the corresponding transport
plan. The function f (x) is continuous and defined over all real values x (with the extension
f (0) = 0) and is bounded above by 0, i.e., f (x) ≤ 0 ∀x ∈ R. As

dFMF
β

dβ
=

1
β2 ∑

k,l
f (βxMF(k, l)), (A18)

we conclude that

dFMF
β

dβ
≤ 0, (A19)

namely that FMF
β is a monotonically decreasing function of β. In addition, we note that FMF

β

is the mean field approximation of the true free energy Fβ and that this approximation
becomes exact when β tends to ∞. Therefore,

lim
β→∞

FMF
β = lim

β→∞
F (β) = dp(S1, S2), (A20)

where dp(S1, S2) = (GWp(S1, S2))
p where GWp(S1, S2) is the traditional GW distance

between the two sets of points S1 and S2 under the metric d1 and d2, respectively.
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Appendix C.2. Monotonicity of the Energy

Let Gβ be the transport plan at the temperature β, and let

Uβ = ∑
k,l

∑
k′ ,l′

Gβ(k, l)
(
d1(k, k′)− s · d2(l, l′)

)pGβ(k′, l′), (A21)

and the corresponding meanfield approximation of the internal energy at the saddle point
and minimum of s = s̄,

UMF
β = ∑

k,l
∑
k′ ,l′

GMF
β (k, l)

∣∣d1(k, k′)− s̄ · d2(l, l′)
∣∣pGMF

β (k′, l′). (A22)

At the saddle point, we have:

∑
l

GMF
β (k, l) = m1(k),

∑
k

GMF
β (k, l) = m2(l),

GMF
β (k, l) = DMF(k, l) = φ(βxMF(k, l)), (A23)

where φ and x are defined above.

Before computing dUMF(β)
dβ , let us first notice that by replacing Equation (A13) into

Equation (A18), and using the constraints above, we get:

β
dFMF(β)

dβ
= −FMF(β)−∑

k,l
DMF(k, l)CMF(k, l)−∑

k
λMF(k)m1(k)−∑

l
µMF(l)m2(l)

+∑
k,l

∑
k′ ,l′

GMF
β (k, l)

∣∣d1(k, k′)− s̄ · d2(l, l′)
∣∣pGMF

β (k′, l′)

+∑
k,l

xMF(k, l)φ(βxMF(k, l)) (A24)

= −FMF(β)−∑
k,l

GMF
β (k, l)CMF(k, l)−∑

k,l
λMF(k)GMF

β (k, l)

−∑
k,l

µMF(l)GMF
β (k, l) + UMF

β + ∑
k,l

xMF(k, l)GMF
β (k, l).

Using the definition of UMF
β (Equation (A22)) and of xMF(k, l) (see Equation (A12)),

we get

β
dFMF

β

dβ
= −FMF

β + UMF
β . (A25)

Note that this equation can be rewritten as,

UMF
β = FMF

β + β
dFMF

β

dβ

=
d(βFMF

β )

dβ
, (A26)

i.e., it extends the relationship shown in Equation (A3) known between the true free energy
and the average energy to their mean field counterparts.
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Based on the chain rule,

dUMF
β

dβ
=

∂UMF
β

∂β
+ ∑

k,l

∂UMF
β

∂C(k, l)
∂C(k, l)

∂β
+ ∑

k,l

∂UMF
β

∂D(k, l)
∂D(k, l)

∂β
+

∑
k

∂UMF
β

∂λ(k)
∂λ(k)

∂β
+ ∑

l

∂UMF
β

∂µ(l)
∂µ(l)

∂β
+

∂UMF
β

∂s
∂s
∂β

. (A27)

We compute the different partial derivatives of UMF
β in this equation based on

Equation (A26). For example,

∂UMF
β

∂C(k, l)
=

∂FMF
β

∂C(k, l)
+ β

∂

∂C(k, l)

(
∂FMF

β

∂β

)

=
∂FMF

β

∂C(k, l)
+ β

∂

∂β

(
∂FMF

β

∂C(k, l)

)
(A28)

= 0,

where the zero is a consequence of the SPA constraints. Similarly, we can show that

∂UMF
β

∂D(k, l)
=

∂UMF
β

∂λ(k)
=

∂UMF
β

∂µ(l)
=

∂UMF
β

∂s
= 0. (A29)

Replacing in Equation (A27) and using Equation (A26) we get

dUMF
β

dβ
=

∂UMF
β

∂β

= 2
∂FMF

β

∂β
+ β

∂

∂β

(
∂FMF

β

∂β

)
(A30)

= 2
∂FMF

β

∂β
+ β

(
−2
β

∂FMF
β

∂β
+

1
β2 ∑

k,l
βxMF(k, l)2φ′(βxMF(k, l))

)
= ∑

k,l
βxMF(k, l)2φ′(βxMF(k, l)).

As xMF(k, l)2 is always positive, and φ′(x) is always negative, we have

dUMF
β

dβ
≤ 0, (A31)

and the function UMF
β is a monotonically decreasing function of β. In addition, we note

that UMF
β is the mean field approximation of the true internal energy Eβ and that this

approximation becomes exact when β tends to ∞. Therefore,

lim
β→∞

UMF
β = lim

β→∞
E(β) = dp(S1, S2), (A32)

where dp(S1, S2) = (GWp(S1, S2))
p where GWp(S1, S2) is the traditional GW distance

between the two sets of points S1 and S2 under the metric d1 and d2, respectively.
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