Application of deconvolution tools on RNA-Seq data

Emeline, Hélène, Natalia

Context and data

Systemic viral spreading and defective host responses are associated with fatal Lassa fever in macaques

Sylvain Baize unit, Biology of Viral Emerging Infections (IP, Lyon)

Lassa fever = Hemorrhagic fever

Identify markers of early infection by Lassa fever

1 time point

Collecting tissues

RNA-Seq on PBMC

Differential analysis + functional analysis → publication

Computationally **inferring cell type proportions** from bulk heterogeneous mixtures

Computationally **inferring cell type proportions** from bulk heterogeneous mixtures

Computationally **inferring cell type proportions** from bulk heterogeneous mixtures

Averaged expression levels of indiv. genes ≠ individual measures for each gene across the different cell types

Computationally **inferring cell type proportions** from bulk heterogeneous mixtures

Averaged expression levels of indiv. genes ≠ individual measures for each gene across the different cell types

Computationally **inferring cell type proportions** from bulk heterogeneous mixtures

Averaged expression levels of indiv. genes ≠ individual measures for each gene across the different cell types

What does it add:

- A more specific analysis than the differential analysis, which can be confounded by differences in cell type proportions
- Being able to infer specific cell type behaviour so they can be targeted
- Alternative to single cell transcriptomics sequencing, fluorescence-activated cell sorting (FACS), immunohistochemistry (IHC) (cost-effective, time-effective)

Computationally infering cell type proportions from bulk heterogeneous mixtures

Averaged expression levels of indiv. genes ≠ individual measures for each gene across the different cell types

What does it add:

- A more specific analysis than the differential analysis, which can be confounded by differences in cell type proportions
- Being able to infer specific cell type behaviour so they can be targeted
- Alternative to single cell transcriptomics sequencing, fluorescence-activated cell sorting (FACS), immunohistochemistry (IHC) (cost-effective, time-effective)

Overview of deconvolution methods

Two families of methods:

- Methods using a signature "file" to identify cellular types and quantify them
 - The famous Im22 matrix that defines genes & cellular types providing an expression level for each
 - Another simpler signature that indicates only specific markers for each cell type

e.g MCP counter, CIBERSORT, OLS, nnls, RLR & FARDEEP

(Newer) methods based on annotated single cell RNA-Seq datasets

Many of them are based in linear models

2) Signature vector

Input

1) Gene counts matrix

*	010_PBMC_J10_S3	010_PBMC_J2_S5	010_PBMC_J4_S4	020_l
ENSMMUG00000000001	385	176	275	
ENSMMUG00000000002	107	31	11	
ENSMMUG00000000005	1822	2430	2682	
ENSMMUG00000000006	43	37	22	
ENSMMUG00000000007	213	109	81	
ENSMMUG00000000009	41337	54531	51724	
ENSMMUG00000000010	541	732	909	
ENSMMUG00000000012	76	71	82	
ENSMMUG00000000013	532	783	692	
ENSMMUG00000000015	0	3	0	

Signatures available for human and mice → Macaca?

2) or signature matrix (LM22)

MMu.ENSEMBL ‡	B.cells.naive ‡	B.cells.memory ‡	Plasma.cells ‡	T.cells.CD8 ‡	T.ce
ENSMMUG00000010788	5.557134e+02	10.744235	7.225819	4.311280	
ENSMMUG00000005301	1.560354e+01	22.094787	653.392328	24.223723	
ENSMMUG00000006211	2.153060e+02	321.621021	38.616872	1055.613378	
ENSMMUG00000002974	6.058974e+02	1935.201479	1120.104684	306.312519	
ENSMMUG00000005317	1.943743e+03	1148.120138	324.780800	22.689718	
ENSMMUG00000005318	3.710336e+02	318.478799	127.967448	44.616287	
FNSMMUG00000017977	1.461956e+02	106.052311	74.339169	42.390416	

Output

A score indicating the abundance level of cell types candidates

Basically, a matrix such as

Different variations around linear model

Several methods rely on different ways to estimate the following linear model

$$Y_i = X\beta_i + \varepsilon_i$$

 Y_i is a p-vector of (transformed/normalized) gene counts for sample i.

X is a $p \times q$ signature matrix.

 ε_i is a random error term.

Deconvolution methods estimate the mixture coefficients β_i for each sample.

OLS minimizes the least squares (quadratic loss)

nnls minimizes the least squares with constraint $\beta_i \ge 0$

RLR minimizes Huber loss

FARDEEP uses adaptive least trimmed squares

Signatures - gene markers

Existing Signatures : immune cells (Tumor env.)

Custom Signatures is a critical step for both bulk and single cell tools

- Datasets available for tissues/species
- All cell types must be present
- Close cell types sharing similar signatures

Reference and script

Check for updates

ARTICLE

https://doi.org/10.1038/s41467-020-19015-1

OPEN

Benchmarking of cell type deconvolution pipelines for transcriptomics data

Francisco Avila Cobos © 1,2,3 M, José Alquicira-Hernandez © 3,4, Joseph E. Powell © 3,4,5, Pieter Mestdagh © 1,2,5 & Katleen De Preter © 1,2,5 M

Code to run the methods compared in this paper https://github.com/favilaco/deconv benchmark

Impact of the data transformation on the deconvolution results

From: Benchmarking of cell type deconvolution pipelines for transcriptomics data. Nat. Cum. DOI: 10.1038/s41467-020-19015-1

Impact of the marker selection on the deconvolution results

Deconvolution tools comparison

Fig. 7 Deconvolution performance on nine human PBMC bulk samples. With a bulk deconvolution methods; b deconvolution methods using scRNA-seq as reference.

From: Benchmarking of cell type deconvolution pipelines for transcriptomics data. Nat. Cum. DOI: 10.1038/s41467-020-19015-1

Results on our Macacas

222444666 222444666

0.6

0.4

0.2

Results on our Macacas - Similarity between methods

Correlation between scores (all cell types + all samples)

- CIBERSORT & RLR
- OLS & RLR

- OLS & FARDEEP
- OLS & NNLS

##		cibersort	fardeep	nnls	OLS	rlr
##	cibersort	1.00	0.61	0.55	0.81	0.95
##	fardeep	0.61	1.00	0.57	0.45	0.64
##	nnls	0.55	0.57	1.00	0.51	0.54
##	OLS	0.81	0.45	0.51	1.00	0.85
##	rlr	0.95	0.64	0.54	0.85	1.00

Results on our Macacas

Main factors affecting deconvolution results

- Data transformation (e.g. linear, log, sqrt, VST)
- Scaling / normalization (column-wise, min-max, logNormalize, ...)
- Marker selection / reference matrix → Highly dependent of biology!
- Cell type composition
- Method

Limitations

Existence of datasets including the cells of interest (for signature): reference markers should include **all cell types** being part of the mixture ("semi-supervised") / H. sapiens - missing cellular components in the reference

Cell types sharing similar signatures / marker genes not being sufficiently cell-type specific

Highly dependant of biology!

Summary of methods

Methods	MCP counter	CIBERSORT	OLS .	nnls	RLR	FARDEEP	MUSIC	DWLS
Main principle	(bulk)	(bulk) support-vector	(bulk) least-squares	(bulk) non-negative least squares	(bulk) robust linear regression	(bulk) robust linear regression	(sc) Multi-subject Single-cell Deconvolution	(sc) dapenned-weigh ted least-squares
Reference signature	Marker vector (absence/presence)	Human LM22 (matrix)	Human LM22 (matrix)	Human LM22 (matrix)	Human LM22 (matrix)	Human LM22 (matrix)	annotated single cell datasets	
R package usage / performance		fast and easy (cibersort function and web)	easy to implement (Im native function)	easy to implement (nnls function)	easy to implement (rlm function)		easy (music function)	time consuming + package hard to install + examples not executable
Overall appreciation						:(No ML, despite name !		